No Arabic abstract
Lectures given at the Theoretical Advanced Study Institute (TASI 2020), 1-26 June 2020. The topics covered include quantum circuits, entanglement, quantum teleportation, Bell inequalities, quantum entropy and decoherence, classical versus quantum measurement, the area law for entanglement entropy in quantum field theory, and simulating quantum field theory on a quantum computer. Along the way we confront the fundamental sloppiness of how we all learned (and some of us taught) quantum mechanics in college. Links to a Python notebook and Mathematica notebooks will allow the reader to reproduce and extend the calculations, as well as perform five experiments on a quantum simulator.
Neutrino-nucleus cross section uncertainties are expected to be a dominant systematic in future accelerator neutrino experiments. The cross sections are determined by the linear response of the nucleus to the weak interactions of the neutrino, and are dominated by energy and distance scales of the order of the separation between nucleons in the nucleus. These response functions are potentially an important early physics application of quantum computers. Here we present an analysis of the resources required and their expected scaling for scattering cross section calculations. We also examine simple small-scale neutrino-nucleus models on modern quantum hardware. In this paper, we use variational methods to obtain the ground state of a three nucleon system (the triton) and then implement the relevant time evolution. In order to tame the errors in present-day NISQ devices, we explore the use of different error-mitigation techniques to increase the fidelity of the calculations.
Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use $2+1$ dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.
Quantum simulation is an important way to study the Dirac particles in a general situation. Discrete quantum walk (DQW), is a powerful quantum simulation scheme, and implementable in well controllable table-top set-ups. We first identify that the conventional DQW cant exactly simulate Dirac Cellular Automaton (DCA), a discretized theory of free Dirac Hamiltonian (DH). We found some choice of coin parameters of the split-step (SS) DQW, a generalization of DQW can fully simulate single-particle DCA. Next we question whether the same SS-DQW can simulate dynamics of free Dirac particle with extra degrees of freedom like colors, flavors besides the spin or chirality. One such example is Neutrino oscillation. By moving from the U(2) coined SS-DQW to the U(6) coined SS-DQW we have simulated the exact probability profile of Neutrino flavor transitions. We further probe towards simulating single particle massive DH in presence of background potentials and space-time curvature. By using a SS-DQW with position-time dependent coin parameters, and we realize that it will give us an unbounded effective Hamiltonian, at the continuum limit of position-time. So we have introduced a modified version of SS-DQW which will produce a bounded effective Hamiltonian. This modified SS-DQW with U(2) coin operations produces single-particle massive DH in presence of abelian gauge potentials and space-time curvature. Introducing higher dimensional---U(N) coin operations in the modified SS-DQW we can include non-abelian potentials in the same DH. In order to simulate two-particle DH in presence of curved space-time and external potentials, we have used two particle modified SS-DQW, where the shift operations act separately on each particle, the coin operations which act simultaneously on both particles contain all kinds of interactions.
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out such a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over $D_N$, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in $n=log N$. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of $D_4$. The fidelity of all $D_4$ gates was found to exceed $80%$.
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly-controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range of possibilities for quantum simulations of complex physical systems. Here, we devise practical proposals for analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to fermions, and 2+1D pure Z2 gauge theory. The scheme proposed, along with the optimization protocol applied, will have applications beyond the examples presented in this work, and will enable scalable analog quantum simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.