Do you want to publish a course? Click here

Quantum Computing for Neutrino-nucleus Scattering

66   0   0.0 ( 0 )
 Added by Rajan Gupta
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Neutrino-nucleus cross section uncertainties are expected to be a dominant systematic in future accelerator neutrino experiments. The cross sections are determined by the linear response of the nucleus to the weak interactions of the neutrino, and are dominated by energy and distance scales of the order of the separation between nucleons in the nucleus. These response functions are potentially an important early physics application of quantum computers. Here we present an analysis of the resources required and their expected scaling for scattering cross section calculations. We also examine simple small-scale neutrino-nucleus models on modern quantum hardware. In this paper, we use variational methods to obtain the ground state of a three nucleon system (the triton) and then implement the relevant time evolution. In order to tame the errors in present-day NISQ devices, we explore the use of different error-mitigation techniques to increase the fidelity of the calculations.



rate research

Read More

We illustrate the connection between electron and neutrino scattering off nuclei and show how the former process can be used to constrain the description of the latter. After reviewing some of the nuclear models commonly used to study lepton-nucleus reactions, we describe in detail the SuSAv2 model and show how its predictions compare with the available electron- and neutrino-scattering data over the kinematical range going from the quasi-elastic peak to pion-production and highly inelastic scattering.
This document is one of a series of whitepapers from the USQCD collaboration. Here, we discuss opportunities for lattice QCD in neutrino-oscillation physics, which inevitably entails nucleon and nuclear structure. In addition to discussing pertinent lattice-QCD calculations of nucleon and nuclear matrix elements, the interplay with models of nuclei is discussed. This program of lattice- QCD calculations is relevant to current and upcoming neutrino experiments, becoming increasingly important on the timescale of LBNF/DUNE and HyperK.
623 - D. Akimov , J.B. Albert , P. An 2017
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross-section is the largest by far of all low-energy neutrino couplings. This mode of interaction provides new opportunities to study neutrino properties, and leads to a miniaturization of detector size, with potential technological applications. We observe this process at a 6.7-sigma confidence level, using a low-background, 14.6-kg CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the Standard Model for this process, are observed in high signal-to-background conditions. Improved constraints on non-standard neutrino interactions with quarks are derived from this initial dataset.
484 - T. Leitner , U. Mosel 2010
We apply the GiBUU model to questions relevant for current and future neutrino long-baseline experiments, we address in particular the relevance of charged-current reactions for neutrino disappearance experiments. A correct identification of charged-current quasielastic (CCQE) events - which is the signal channel in oscillation experiments - is relevant for the neutrino energy reconstruction and thus for the oscillation result. We show that about 20% of the quasielastic cross section is misidentified in present-day experiments and has to be corrected for by means of event generators. Furthermore, we show that also a significant part of 1pi+ (> 40%) events is misidentified as CCQE mainly caused by the pion absorption in the nucleus. We also discuss the dependence of both of these numbers on experimental detection thresholds. We further investigate the influence of final-state interactions on the neutrino energy reconstruction.
262 - S. Kerman , V. Sharma , M. Deniz 2016
Neutrino-nucleus elastic scattering provides a unique laboratory to study the quantum mechanical coherency effects in electroweak interactions, towards which several experimental programs are being actively pursued. We report results of our quantitative studies on the transitions towards decoherency. A parameter ($alpha$) is identified to describe the degree of coherency, and its variations with incoming neutrino energy, detector threshold and target nucleus are studied. The ranges of $alpha$ which can be probed with realistic neutrino experiments are derived, indicating complementarity between projects with different sources and targets. Uncertainties in nuclear physics and in $alpha$ would constrain sensitivities in probing physics beyond the standard model. The maximum neutrino energies corresponding to $alpha$>0.95 are derived.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا