Do you want to publish a course? Click here

Microstructure-informed reduced modes synthesized with Wang tiles and the Generalized Finite Element Method

104   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

A recently introduced representation by a set of Wang tiles -- a generalization of the traditional Periodic Unit Cell based approach -- serves as a reduced geometrical model for materials with stochastic heterogeneous microstructure, enabling an efficient synthesis of microstructural realizations. To facilitate macroscopic analyses with a fully resolved microstructure generated with Wang tiles, we develop a reduced order modelling scheme utilizing pre-computed characteristic features of the tiles. In the offline phase, inspired by the computational homogenization, we extract continuous fluctuation fields from the compressed microstructural representation as responses to generalized loading represented by the first- and second-order macroscopic gradients. In the online phase, using the ansatz of the Generalized Finite Element Method, we combine these fields with a coarse finite element discretization to create microstructure-informed reduced modes specific for a given macroscopic problem. Considering a two-dimensional scalar elliptic problem, we demonstrate that our scheme delivers less than a 3% error in both the relative $L_2$ and energy norms with only 0.01% of the unknowns when compared to the fully resolved problem. Accuracy can be further improved by locally refining the macroscopic discretization and/or employing more pre-computed fluctuation fields. Finally, unlike the standard snapshot-based reduced-order approaches, our scheme handles significant changes in the macroscopic geometry or loading without the need for recalculating the offline phase, because the fluctuation fields are extracted without any prior knowledge on the macroscopic problem.

rate research

Read More

In this paper, we propose a local-global multiscale method for highly heterogeneous stochastic groundwater flow problems under the framework of reduced basis method and the generalized multiscale finite element method (GMsFEM). Due to incomplete characterization of the medium properties of the groundwater flow problems, random variables are used to parameterize the uncertainty. As a result, solving the problem repeatedly is required to obtain statistical quantities. Besides, the medium properties are usually highly heterogeneous, which will result in a large linear system that needs to be solved. Therefore, it is intrinsically inevitable to seek a computational-efficient model reduction method to overcome the difficulty. We will explore the combination of the reduced basis method and the GMsFEM. In particular, we will use residual-driven basis functions, which are key ingredients in GMsFEM. This local-global multiscale method is more efficient than applying the GMsFEM or reduced basis method individually. We first construct parameter-independent multiscale basis functions that include both local and global information of the permeability fields, and then use these basis functions to construct several global snapshots and global basis functions for fast online computation with different parameter inputs. We provide rigorous analysis of the proposed method and extensive numerical examples to demonstrate the accuracy and efficiency of the local-global multiscale method.
In the analysis of composite materials with heterogeneous microstructures, full resolution of the heterogeneities using classical numerical approaches can be computationally prohibitive. This paper presents a micromechanics-enhanced finite element formulation that accurately captures the mechanical behaviour of heterogeneous materials in a computationally efficient manner. The strategy exploits analytical solutions derived by Eshelby for ellipsoidal inclusions in order to determine the mechanical perturbation fields as a result of the underlying heterogeneities. Approximation functions for these perturbation fields are then incorporated into a finite element formulation to augment those of the macroscopic fields. A significant feature of this approach is that the finite element mesh does not explicitly resolve the heterogeneities and that no additional degrees of freedom are introduced. In this paper, hybrid-Trefftz stress finite elements are utilised and performance of the proposed formulation is demonstrated with numerical examples. The method is restricted here to elastic particulate composites with ellipsoidal inclusions but it has been designed to be extensible to a wider class of materials comprising arbitrary shaped inclusions.
This study presents a finite element analysis approach to non-linear and linearized tensegrity dynamics based on the Lagrangian method with nodal coordinate vectors as the generalized coordinates. In this paper, nonlinear tensegrity dynamics with and without constraints are first derived. The equilibrium equations in three standard forms (in terms of nodal coordinate, force density, and force vectors) and the compatibility equation are also given. Then, we present the linearized dynamics and modal analysis equations with and without constraints. The developed approach is capable of conducting the following comprehensive dynamics studies for any tensegrity structures accurately: 1. Performing rigid body dynamics with acceptable errors, which is achieved by setting relatively high stiffness for bars in the simulation. 2. Simulating FEM dynamics accurately, where bars and strings can have elastic or plastic deformations. 3. Dealing with various kinds of boundary conditions, for example, fixing or applying static/dynamic loads at any nodes in any direction (i.e., gravitational force, some specified forces, or arbitrary seismic vibrations). 4. Conducting accurate modal analysis, including natural frequency and corresponding modes. Three examples, a double pendulum, a cantilever truss with external force, and a double prism tensegrity tower, are carefully selected and studied. The results are compared with rigid body dynamics and FEM software ANSYS. This study provides a deep insight into structures, materials, performances, as well as an interface towards integrating control theories.
In this work, we present an adaptive unfitted finite element scheme that combines the aggregated finite element method with parallel adaptive mesh refinement. We introduce a novel scalable distributed-memory implementation of the resulting scheme on locally-adapted Cartesian forest-of-trees meshes. We propose a two-step algorithm to construct the finite element space at hand by means of a discrete extension operator that carefully mixes aggregation constraints of problematic degrees of freedom, which get rid of the small cut cell problem, and standard hanging degree of freedom constraints, which ensure trace continuity on non-conforming meshes. Following this approach, we derive a finite element space that can be expressed as the original one plus well-defined linear constraints. Moreover, it requires minimum parallelization effort, using standard functionality available in existing large-scale finite element codes. Numerical experiments demonstrate its optimal mesh adaptation capability, robustness to cut location and parallel efficiency, on classical Poisson $hp$-adaptivity benchmarks. Our work opens the path to functional and geometrical error-driven dynamic mesh adaptation with the aggregated finite element method in large-scale realistic scenarios. Likewise, it can offer guidance for bridging other scalable unfitted methods and parallel adaptive mesh refinement.
This investigation completely classifies the spatial chaos problem in plane edge coloring (Wang tiles) with two symbols. For a set of Wang tiles $mathcal{B}$, spatial chaos occurs when the spatial entropy $h(mathcal{B})$ is positive. $mathcal{B}$ is called a minimal cycle generator if $mathcal{P}(mathcal{B}) eqemptyset$ and $mathcal{P}(mathcal{B})=emptyset$ whenever $mathcal{B}subsetneqq mathcal{B}$, where $mathcal{P}(mathcal{B})$ is the set of all periodic patterns on $mathbb{Z}^{2}$ generated by $mathcal{B}$. Given a set of Wang tiles $mathcal{B}$, write $mathcal{B}=C_{1}cup C_{2} cupcdots cup C_{k} cup N$, where $C_{j}$, $1leq jleq k$, are minimal cycle generators and $mathcal{B}$ contains no minimal cycle generator except those contained in $C_{1}cup C_{2} cupcdots cup C_{k}$. Then, the positivity of spatial entropy $h(mathcal{B})$ is completely determined by $C_{1}cup C_{2} cupcdots cup C_{k}$. Furthermore, there are 39 equivalent classes of marginal positive-entropy (MPE) sets of Wang tiles and 18 equivalent classes of saturated zero-entropy (SZE) sets of Wang tiles. For a set of Wang tiles $mathcal{B}$, $h(mathcal{B})$ is positive if and only if $mathcal{B}$ contains an MPE set, and $h(mathcal{B})$ is zero if and only if $mathcal{B}$ is a subset of an SZE set.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا