Do you want to publish a course? Click here

Potential asteroid discoveries by the ESA Gaia mission: Results from follow-up observations

336   0   0.0 ( 0 )
 Added by Benoit Carry
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Since July 2014, the ESA Gaia mission has been surveying the entire sky down to magnitude 20.7 in the visible. In addition to the millions of stars, thousands of Solar System Objects (SSOs) are observed daily. By comparing their positions to those of known objects, a daily processing pipeline filters known objects from potential discoveries. However, owing to Gaias specific scanning law designed for stars, potential newly discovered moving objects are characterized by very few observations, acquired over a limited time. This aspect was recognized early in the design of the Gaia data processing. A daily processing pipeline dedicated to these candidate discoveries was set up to release calls for observations to a network of ground-based telescopes. Their aim is to acquire follow-up astrometry and to characterize these objects. From the astrometry measured by Gaia, preliminary orbital solutions are determined, allowing to predict the position of these potentially new discovered objects in the sky accounting for the large parallax between Gaia and the Earth (separated by 0.01 au). A specific task within the Gaia Consortium has been responsible for the distribution of requests for follow-up observations of potential Gaia SSO discoveries. Since late 2016, these calls for observations (called alerts) are published daily via a Web interface, freely available to anyone world-wide. Between November 2016 and July 2020, over 1700 alerts have been published, leading to the successful recovery of more than 200 objects. Among those, six have provisional designation assigned with the Gaia observations, the others being previously known objects with poorly characterized orbits, precluding identification at the time of Gaia observations. There is a clear trend for objects with a high inclination to be unidentified, revealing a clear bias in the current census of SSOs against high inclination populations.



rate research

Read More

In the 1-2.5 micron range, spectroscopic observations are made on the AcuA-spec asteroids, whose spectra were obtained in a continuous covered mode between 2.5-5.0 micron by AKARI. Based on the Bus-DeMeo taxonomy (DeMeo et al. 2009, Icarus, 202, 160), all the AcuA-spec asteroids are classified, using the published and our observational data. Additionally, taking advantage of the Bus-DeMeo taxonomy characteristics, we constrain the characteristic each spectral type by combining the taxonomy results with the other physical observational data from colorimetry, polarimetry, radar, and radiometry. As a result, it is suggested that certain C-, Cb-, B-type, dark X-, and D-complex asteroids have spectral properties compatible with those of anhydrous interplanetary dust particles with tiny bright material, such as water ice. This supports the proposal regarding the C-complex asteroids (Vernazza et al. 2015, ApJ, 806, 204; 2017, AJ, 153, 72). A combination of the Bus-DeMeo taxonomy for AcuA-spec asteroids and the presumptions with other physical clues such as the polarimetric inversion angle, radar albedo, and mid-infrared spectroscopic spectra will be beneficial for surface material constraints, from the AcuA-spec asteroid observations.
After the early observations of the disrupted asteroid P/2016 G1 with the 10.4m Gran Telescopio Canarias (GTC), and the modeling of the dust ejecta, we have performed a follow-up observational campaign of this object using the Hubble Space Telescope (HST) during two epochs (June 28 and July 11, 2016). The analysis of these HST images with the same model inputs obtained from the GTC images revealed a good consistency with the predicted evolution from the GTC images, so that the model is applicable to the whole observational period from late April to early July 2016. This result confirms that the resulting dust ejecta was caused by a relatively short-duration event with onset about 350 days before perihelion, and spanning about 30 days (HWHM). For a size distribution of particles with a geometric albedo of 0.15, having radii limits of 1 $mu$m and 1 cm, and following a power-law with index --3.0, the total dust mass ejected is $sim$2$times$10$^7$ kg. As was the case with the GTC observations, no condensations in the images that could be attributed to a nucleus or fragments released after the disruption event were found. However, the higher limiting magnitude reachable with the HST images in comparison with those from GTC allowed us to impose a more stringent upper limit to the observed fragments of $sim$30 m.
The Gaia mission started its regular observing program in the summer of 2014, and since then it is regularly obtaining observations of asteroids. This paper draws the outline of the data processing for Solar System objects, and in particular on the daily short-term processing, from the on-board data acquisition to the ground-based processing. We illustrate the tools developed to compute predictions of asteroid observations, we discuss the procedures implemented by the daily processing, and we illustrate some tests and validations of the processing of the asteroid observations. Our findings are overall consistent with the expectations concerning the performances of Gaia and the effectiveness of the developed software for data reduction.
We present precision 4.5 $mu$m Spitzer transit photometry of eight planet candidates discovered by the K2 mission: K2-52 b, K2-53 b, EPIC 205084841.01, K2-289 b, K2-174 b, K2-87 b, K2-90 b, and K2-124 b. The sample includes four sub-Neptunes and two sub-Saturns, with radii between 2.6 and 18 $R_oplus$, and equilibrium temperatures between 440 and 2000 K. In this paper we identify several targets of potential interest for future characterization studies, demonstrate the utility of transit follow-up observations for planet validation and ephemeris refinement, and present new imaging and spectroscopy data. Our simultaneous analysis of the K2 and Spitzer light curves yields improved estimates of the planet radii, and multi-wavelength information which help validate their planetary nature, including the previously un-validated candidate EPIC 205686202.01 (K2-289 b). Our Spitzer observations yield an order of magnitude increase in ephemeris precision, thus paving the way for efficient future study of these interesting systems by reducing the typical transit timing uncertainty in mid-2021 from several hours to a dozen or so minutes. K2-53 b, K2-289 b, K2-174 b, K2-87 b, and K2-90 b are promising radial velocity (RV) targets given the performance of spectrographs available today or in development, and the M3V star K2-124 hosts a temperate sub-Neptune that is potentially a good target for both RV and atmospheric characterization studies.
Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Here we present new spectra of 1996 FG3 and we compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. We obtained the spectra using DOLORES and NICS instruments at the Telescopio Nazionale Galileo (TNG), a 3.6m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S, and studied any plausible correlation of this quantity with the phase angle (alpha). In the case of visible spectra, we find a variation in spectral slope of Delta S = 0.15 +- 0.10 %/10^3 A/degree for 3 < alpha < 18 degrees, in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, we find a variation in the slope of Delta S = 0.04 +- 0.08 %/10^3 A/degree for 6 < alpha < 51 degrees. Our computed variation in S agrees with the only two values found in the literature for the phase reddening in the near-infrared. The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا