No Arabic abstract
The Gaia mission started its regular observing program in the summer of 2014, and since then it is regularly obtaining observations of asteroids. This paper draws the outline of the data processing for Solar System objects, and in particular on the daily short-term processing, from the on-board data acquisition to the ground-based processing. We illustrate the tools developed to compute predictions of asteroid observations, we discuss the procedures implemented by the daily processing, and we illustrate some tests and validations of the processing of the asteroid observations. Our findings are overall consistent with the expectations concerning the performances of Gaia and the effectiveness of the developed software for data reduction.
The Gaia Data Release 2 provides precise astrometry for nearly 1.5 billion sources across the entire sky, including several thousand asteroids. In this work, we provide evidence that reasonably large asteroids (diameter $>$ 20 km) have high correlations with Gaia relative flux uncertainties and systematic right ascension errors. We further capture these correlations using a logistic Bayesian additive regression tree model. We compile a small list of probable large asteroids that can be targeted for direct diameter measurements and shape reconstruction.
Since July 2014, the ESA Gaia mission has been surveying the entire sky down to magnitude 20.7 in the visible. In addition to the millions of stars, thousands of Solar System Objects (SSOs) are observed daily. By comparing their positions to those of known objects, a daily processing pipeline filters known objects from potential discoveries. However, owing to Gaias specific scanning law designed for stars, potential newly discovered moving objects are characterized by very few observations, acquired over a limited time. This aspect was recognized early in the design of the Gaia data processing. A daily processing pipeline dedicated to these candidate discoveries was set up to release calls for observations to a network of ground-based telescopes. Their aim is to acquire follow-up astrometry and to characterize these objects. From the astrometry measured by Gaia, preliminary orbital solutions are determined, allowing to predict the position of these potentially new discovered objects in the sky accounting for the large parallax between Gaia and the Earth (separated by 0.01 au). A specific task within the Gaia Consortium has been responsible for the distribution of requests for follow-up observations of potential Gaia SSO discoveries. Since late 2016, these calls for observations (called alerts) are published daily via a Web interface, freely available to anyone world-wide. Between November 2016 and July 2020, over 1700 alerts have been published, leading to the successful recovery of more than 200 objects. Among those, six have provisional designation assigned with the Gaia observations, the others being previously known objects with poorly characterized orbits, precluding identification at the time of Gaia observations. There is a clear trend for objects with a high inclination to be unidentified, revealing a clear bias in the current census of SSOs against high inclination populations.
Astrometric positions of moving objects in the Solar System have been measured using a variety of star catalogs in the past. Previous work has shown that systematic errors in star catalogs can affect the accuracy of astrometric observations. That, in turn, can influence the resulting orbit fits for minor planets. In order to quantify these systematic errors, we compare the positions and proper motion of stellar sources in the most utilized star catalogs to the second release of the Gaia star catalog. The accuracy of Gaia astrometry allows us to unambiguously identify local biases and derive a scheme that can be used to correct past astrometric observations of solar system objects. Here we provide a substantially improved debiasing scheme for 26 astrometric catalogs that were extensively used in minor planet astrometry. Revised corrections near the galactic center eliminate artifacts that could be traced back to reference catalogs used in previous debiasing schemes. Median differences in stellar positions between catalogs now tend to be on the order of several tens of milliarcseconds (mas) but can be as large as 175 mas. Median stellar proper motion corrections scatter around 0.3 mas/yr and range from 1 to 4 mas/yr for star catalogs with and without proper motion, respectively. The tables in this work are meant to be applied to existing optical observations. They are not intended to correct new astrometric measurments as those should make use of the Gaia astrometric catalog. Since previous debiasing schemes already reduced systematics in past observations to a large extent, corrections beyond the current work may not be needed in the foreseeable future.
The Gaia spacecraft of the European Space Agency (ESA) has been securing observations of solar system objects (SSOs) since the beginning of its operations. Gaia Data Release 2 (DR2) contains the observations of a selected sample of 14,099 SSOs. These asteroids have been already identified and have been numbered by the Minor Planet Center. Positions are provided for each Gaia observation at CCD level. As additional information, the apparent brightness of SSOs in the unfiltered G band is also provided for selected observations. We explain the processing of SSO data, and describe the criteria we used to select the sample published in Gaia DR2. We then explore the data set to assess its quality. To exploit the epoch astrometry of asteroids in Gaia DR2 it is necessary to take into account the unusual properties of the uncertainty, as the position information is nearly one-dimensional. When this aspect is handled appropriately, an orbit fit can be obtained with post-fit residuals that are overall consistent with the a-priori error model that was used to define individual values of the astrometric uncertainty. The distribution of residuals allowed us to identify possible contaminants in the data set. Photometry in the G band was compared to computed values from reference asteroid shapes and to the flux registered at the corresponding epochs by the red and blue photometers (RP and BP). The overall astrometric performance is close to the expectations, with an optimal range of brightness G~12-17. In this range, the typical transit-level accuracy is well below 1 mas. For fainter asteroids, the growing photon noise deteriorates the performance. Asteroids brighter than G~12 are affected by a lower performance of the processing of their signals. The dramatic improvement brought by Gaia DR2 astrometry of SSOs is demonstrated by preliminary tests on the detection of subtle non-gravitational effects.
The Gaia Data Release 2 contains the 1st release of radial velocities complementing the kinematic data of a sample of about 7 million relatively bright, late-type stars. Aims: This paper provides a detailed description of the Gaia spectroscopic data processing pipeline, and of the approach adopted to derive the radial velocities presented in DR2. Methods: The pipeline must perform four main tasks: (i) clean and reduce the spectra observed with the Radial Velocity Spectrometer (RVS); (ii) calibrate the RVS instrument, including wavelength, straylight, line-spread function, bias non-uniformity, and photometric zeropoint; (iii) extract the radial velocities; and (iv) verify the accuracy and precision of the results. The radial velocity of a star is obtained through a fit of the RVS spectrum relative to an appropriate synthetic template spectrum. An additional task of the spectroscopic pipeline was to provide 1st-order estimates of the stellar atmospheric parameters required to select such template spectra. We describe the pipeline features and present the detailed calibration algorithms and software solutions we used to produce the radial velocities published in DR2. Results: The spectroscopic processing pipeline produced median radial velocities for Gaia stars with narrow-band near-IR magnitude Grvs < 12 (i.e. brighter than V~13). Stars identified as double-lined spectroscopic binaries were removed from the pipeline, while variable stars, single-lined, and non-detected double-lined spectroscopic binaries were treated as single stars. The scatter in radial velocity among different observations of a same star, also published in DR2, provides information about radial velocity variability. For the hottest (Teff > 7000 K) and coolest (Teff < 3500 K) stars, the accuracy and precision of the stellar parameter estimates are not sufficient to allow selection of appropriate templates. [Abridged]