No Arabic abstract
The process of revitalizing cities in the United States suffers from balky and unresponsive processes---de jure egalitarian but de facto controlled and mediated by city officials and powerful interests, not residents. We argue that, instead, our goal should be to put city planning in the hands of the people, and to that end, give ordinary residents pattern-based planning tools to help them redesign (and repair) their urban surrounds. Through this, residents can explore many disparate ideas, try them, and, if successful, replicate them, enabling bottom-up city planning through direct action. We describe a prototype for such a tool that leverages classic patterns to enable city planning by residents, using case studies from Los Angeles as guides for both the problem and potential solution.
Fencing is a sport that relies heavily on the use of tactics. However, most existing methods for analyzing fencing data are based on statistical models in which hidden patterns are difficult to discover. Unlike sequential games, such as tennis and table tennis, fencing is a type of simultaneous game. Thus, the existing methods on the sports visualization do not operate well for fencing matches. In this study, we cooperated with experts to analyze the technical and tactical characteristics of fencing competitions. To meet the requirements of the fencing experts, we designed and implemented FencingVis, an interactive visualization system for fencing competition data.The action sequences in the bout are first visualized by modified bar charts to reveal the actions of footworks and bladeworks of both fencers. Then an interactive technique is provided for exploring the patterns of behavior of fencers. The different combinations of tactical behavior patterns are further mapped to the graph model and visualized by a tactical flow graph. This graph can reveal the different strategies adopted by both fencers and their mutual influence in one bout. We also provided a number of well-coordinated views to supplement the tactical flow graph and display the information of the fencing competition from different perspectives. The well-coordinated views are meant to organically integrate with the tactical flow graph through consistent visual style and view coordination. We demonstrated the usability and effectiveness of the proposed system with three case studies. On the basis of expert feedback, FencingVis can help analysts find not only the tactical patterns hidden in fencing bouts, but also the technical and tactical characteristics of the contestant.
Reinforcement learning techniques successfully generate convincing agent behaviors, but it is still difficult to tailor the behavior to align with a users specific preferences. What is missing is a communication method for the system to explain the behavior and for the user to repair it. In this paper, we present a novel interaction method that uses interactive explanations using templates of natural language as a communication method. The main advantage of this interaction method is that it enables a two-way communication channel between users and the agent; the bot can explain its thinking procedure to the users, and the users can communicate their behavior preferences to the bot using the same interactive explanations. In this manner, the thinking procedure of the bot is transparent, and users can provide corrections to the bot that include a suggested action to take, a goal to achieve, and the reasons behind these decisions. We tested our proposed method in a clone of the video game named textit{Super Mario Bros.}, and the results demonstrate that our interactive explanation approach is effective at diagnosing and repairing bot behaviors.
With the fast development of network information technology, more and more people are immersed in the virtual community environment brought by the network, ignoring the social interaction in real life. The consequent urban autism problem has become more and more serious. Promoting offline communication between people and eliminating loneliness through emotional communication between pet robots and breeders to solve this problem, and has developed a design called Tom. Tom is a smart pet robot with a pet robot-based social mechanism Called Tom-Talker. The main contribution of this paper is to propose a social mechanism called Tom-Talker that encourages users to socialize offline. And Tom-Talker also has a corresponding reward mechanism and a friend recommendation algorithm. It also proposes a pet robot named Tom with an emotional interaction algorithm to recognize users emotions, simulate animal emotions and communicate emotionally with use s. This paper designs experiments and analyzes the results. The results show that our pet robots have a good effect on solving urban autism problems.
Increased access to mobile devices motivates the need to design communicative visualizations that are responsive to varying screen sizes. However, relatively little design guidance or tooling is currently available to authors. We contribute a detailed characterization of responsive visualization strategies in communication-oriented visualizations, identifying 76 total strategies by analyzing 378 pairs of large screen (LS) and small screen (SS) visualizations from online articles and reports. Our analysis distinguishes between the Targets of responsive visualization, referring to what elements of a design are changed and Actions representing how targets are changed. We identify key trade-offs related to authors need to maintain graphical density, referring to the amount of information per pixel, while also maintaining the message or intended takeaways for users of a visualization. We discuss implications of our findings for future visualization tool design to support responsive transformation of visualization designs, including requirements for automated recommenders for communication-oriented responsive visualizations.
To ensure that users of online services understand what data are collected and how they are used in algorithmic decision-making, the European Unions General Data Protection Regulation (GDPR) specifies informed consent as a minimal requirement. For online news outlets consent is commonly elicited through interface design elements in the form of a pop-up. We have manually analyzed 300 data collection consent notices from news outlets that are built to ensure compliance with GDPR. The analysis uncovered a variety of strategies or dark patterns that circumvent the intent of GDPR by design. We further study the presence and variety of these dark patterns in these cookie consents and use our observations to specify the concept of dark pattern in the context of consent elicitation.