No Arabic abstract
With the fast development of network information technology, more and more people are immersed in the virtual community environment brought by the network, ignoring the social interaction in real life. The consequent urban autism problem has become more and more serious. Promoting offline communication between people and eliminating loneliness through emotional communication between pet robots and breeders to solve this problem, and has developed a design called Tom. Tom is a smart pet robot with a pet robot-based social mechanism Called Tom-Talker. The main contribution of this paper is to propose a social mechanism called Tom-Talker that encourages users to socialize offline. And Tom-Talker also has a corresponding reward mechanism and a friend recommendation algorithm. It also proposes a pet robot named Tom with an emotional interaction algorithm to recognize users emotions, simulate animal emotions and communicate emotionally with use s. This paper designs experiments and analyzes the results. The results show that our pet robots have a good effect on solving urban autism problems.
In this work we study the use of moderate deviation functions to measure similarity and dissimilarity among a set of given interval-valued data. To do so, we introduce the notion of interval-valued moderate deviation function and we study in particular those interval-valued moderate deviation functions which preserve the width of the input intervals. Then, we study how to apply these functions to construct interval-valued aggregation functions. We have applied them in the decision making phase of two Motor-Imagery Brain Computer Interface frameworks, obtaining better results than those obtained using other numerical and intervalar aggregations.
Robot Assisted Therapy is a new paradigm in many therapies such as the therapy of children with autism spectrum disorder. In this paper we present the use of a parrot-like robot as an assistive tool in turn taking therapy. The therapy is designed in the form of a card game between a child with autism and a therapist or the robot. The intervention was implemented in a single subject study format and the effect sizes for different turn taking variables are calculated. The results show that the child robot interaction had larger effect size than the child trainer effect size in most of the turn taking variables. Furthermore the therapist point of view on the proposed Robot Assisted Therapy is evaluated using a questionnaire. The therapist believes that the robot is appealing to children which may ease the therapy process. The therapist suggested to add other functionalities and games to let children with autism to learn more turn taking tasks and better generalize the learned tasks
A solid methodology to understand human perception and preferences in human-robot interaction (HRI) is crucial in designing real-world HRI. Social cognition posits that the dimensions Warmth and Competence are central and universal dimensions characterizing other humans. The Robotic Social Attribute Scale (RoSAS) proposes items for those dimensions suitable for HRI and validated them in a visual observation study. In this paper we complement the validation by showing the usability of these dimensions in a behavior based, physical HRI study with a fully autonomous robot. We compare the findings with the popular Godspeed dimensions Animacy, Anthropomorphism, Likeability, Perceived Intelligence and Perceived Safety. We found that Warmth and Competence, among all RoSAS and Godspeed dimensions, are the most important predictors for human preferences between different robot behaviors. This predictive power holds even when there is no clear consensus preference or significant factor difference between conditions.
We present the design of an online social skills development interface for teenagers with autism spectrum disorder (ASD). The interface is intended to enable private conversation practice anywhere, anytime using a web-browser. Users converse informally with a virtual agent, receiving feedback on nonverbal cues in real-time, and summary feedback. The prototype was developed in consultation with an expert UX designer, two psychologists, and a pediatrician. Using the data from 47 individuals, feedback and dialogue generation were automated using a hidden Markov model and a schema-driven dialogue manager capable of handling multi-topic conversations. We conducted a study with nine high-functioning ASD teenagers. Through a thematic analysis of post-experiment interviews, identified several key design considerations, notably: 1) Users should be fully briefed at the outset about the purpose and limitations of the system, to avoid unrealistic expectations. 2) An interface should incorporate positive acknowledgment of behavior change. 3) Realistic appearance of a virtual agent and responsiveness are important in engaging users. 4) Conversation personalization, for instance in prompting laconic users for more input and reciprocal questions, would help the teenagers engage for longer terms and increase the systems utility.
Neurofeedback games are an effective and playful approach to enhance certain social and attentional capabilities in children with autism, which are promising to become widely accessible along with the commercialization of mobile EEG modules. However, little industry-based experiences are shared, regarding how to better design neurofeedback games to fine-tune their playability and user experiences for autistic children. In this paper, we review the experiences we gained from industry practice, in which a series of mobile EEG neurofeedback games have been developed for preschool autistic children. We briefly describe our design and development in a one-year collaboration with a special education center involving a group of stakeholders: children with autism and their caregivers and parents. We then summarize four concrete implications we learnt concerning the design of game characters, game narratives, as well as gameplay elements, which aim to support future work in creating better neurofeedback games for preschool children with autism.