Do you want to publish a course? Click here

Generating Dialogue Responses from a Semantic Latent Space

314   0   0.0 ( 0 )
 Added by Wei-Jen Ko
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Existing open-domain dialogue generation models are usually trained to mimic the gold response in the training set using cross-entropy loss on the vocabulary. However, a good response does not need to resemble the gold response, since there are multiple possible responses to a given prompt. In this work, we hypothesize that the current models are unable to integrate information from multiple semantically similar valid responses of a prompt, resulting in the generation of generic and uninformative responses. To address this issue, we propose an alternative to the end-to-end classification on vocabulary. We learn the pair relationship between the prompts and responses as a regression task on a latent space instead. In our novel dialog generation model, the representations of semantically related sentences are close to each other on the latent space. Human evaluation showed that learning the task on a continuous space can generate responses that are both relevant and informative.



rate research

Read More

Conditional Variational AutoEncoder (CVAE) effectively increases the diversity and informativeness of responses in open-ended dialogue generation tasks through enriching the context vector with sampled latent variables. However, due to the inherent one-to-many and many-to-one phenomena in human dialogues, the sampled latent variables may not correctly reflect the contexts semantics, leading to irrelevant and incoherent generated responses. To resolve this problem, we propose Self-separated Conditional Variational AutoEncoder (abbreviated as SepaCVAE) that introduces group information to regularize the latent variables, which enhances CVAE by improving the responses relevance and coherence while maintaining their diversity and informativeness. SepaCVAE actively divides the input data into groups, and then widens the absolute difference between data pairs from distinct groups, while narrowing the relative distance between data pairs in the same group. Empirical results from automatic evaluation and detailed analysis demonstrate that SepaCVAE can significantly boost responses in well-established open-domain dialogue datasets.
99 - Yu Bao , Hao Zhou , Shujian Huang 2019
Variational auto-encoders (VAEs) are widely used in natural language generation due to the regularization of the latent space. However, generating sentences from the continuous latent space does not explicitly model the syntactic information. In this paper, we propose to generate sentences from disentangled syntactic and semantic spaces. Our proposed method explicitly models syntactic information in the VAEs latent space by using the linearized tree sequence, leading to better performance of language generation. Additionally, the advantage of sampling in the disentangled syntactic and semantic latent spaces enables us to perform novel applications, such as the unsupervised paraphrase generation and syntax-transfer generation. Experimental results show that our proposed model achieves similar or better performance in various tasks, compared with state-of-the-art related work.
Many existing conversation models that are based on the encoder-decoder framework have focused on ways to make the encoder more complicated to enrich the context vectors so as to increase the diversity and informativeness of generated responses. However, these approaches face two problems. First, the decoder is too simple to effectively utilize the previously generated information and tends to generate duplicated and self-contradicting responses. Second, the complex encoder tends to generate diverse but incoherent responses because the complex context vectors may deviate from the original semantics of context. In this work, we proposed a conversation model named THINK (Teamwork generation Hover around Impressive Noticeable Keywords) to make the decoder more complicated and avoid generating duplicated and self-contradicting responses. The model simplifies the context vectors and increases the coherence of generated responses in a reasonable way. For this model, we propose Teamwork generation framework and Semantics Extractor. Compared with other baselines, both automatic and human evaluation showed the advantages of our model.
Conventional approaches to personalized dialogue generation typically require a large corpus, as well as predefined persona information. However, in a real-world setting, neither a large corpus of training data nor persona information are readily available. To address these practical limitations, we propose a novel multi-task meta-learning approach which involves training a model to adapt to new personas without relying on a large corpus, or on any predefined persona information. Instead, the model is tasked with generating personalized responses based on only the dialogue context. Unlike prior work, our approach leverages on the provided persona information only during training via the introduction of an auxiliary persona reconstruction task. In this paper, we introduce 2 frameworks that adopt the proposed multi-task meta-learning approach: the Multi-Task Meta-Learning (MTML) framework, and the Alternating Multi-Task Meta-Learning (AMTML) framework. Experimental results show that utilizing MTML and AMTML results in dialogue responses with greater persona consistency.
Conversational interfaces are increasingly popular as a way of connecting people to information. Corpus-based conversational interfaces are able to generate more diverse and natural responses than template-based or retrieval-based agents. With their increased generative capacity of corpusbased conversational agents comes the need to classify and filter out malevolent responses that are inappropriate in terms of content and dialogue acts. Previous studies on the topic of recognizing and classifying inappropriate content are mostly focused on a certain category of malevolence or on single sentences instead of an entire dialogue. In this paper, we define the task of Malevolent Dialogue Response Detection and Classification (MDRDC). We make three contributions to advance research on this task. First, we present a Hierarchical Malevolent Dialogue Taxonomy (HMDT). Second, we create a labelled multi-turn dialogue dataset and formulate the MDRDC task as a hierarchical classification task over this taxonomy. Third, we apply stateof-the-art text classification methods to the MDRDC task and report on extensive experiments aimed at assessing the performance of these approaches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا