Do you want to publish a course? Click here

RODE: Learning Roles to Decompose Multi-Agent Tasks

154   0   0.0 ( 0 )
 Added by Tonghan Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Role-based learning holds the promise of achieving scalable multi-agent learning by decomposing complex tasks using roles. However, it is largely unclear how to efficiently discover such a set of roles. To solve this problem, we propose to first decompose joint action spaces into restricted role action spaces by clustering actions according to their effects on the environment and other agents. Learning a role selector based on action effects makes role discovery much easier because it forms a bi-level learning hierarchy -- the role selector searches in a smaller role space and at a lower temporal resolution, while role policies learn in significantly reduced primitive action-observation spaces. We further integrate information about action effects into the role policies to boost learning efficiency and policy generalization. By virtue of these advances, our method (1) outperforms the current state-of-the-art MARL algorithms on 10 of the 14 scenarios that comprise the challenging StarCraft II micromanagement benchmark and (2) achieves rapid transfer to new environments with three times the number of agents. Demonstrative videos are available at https://sites.google.com/view/rode-marl .



rate research

Read More

This paper considers multi-agent reinforcement learning (MARL) in networked system control. Specifically, each agent learns a decentralized control policy based on local observations and messages from connected neighbors. We formulate such a networked MARL (NMARL) problem as a spatiotemporal Markov decision process and introduce a spatial discount factor to stabilize the training of each local agent. Further, we propose a new differentiable communication protocol, called NeurComm, to reduce information loss and non-stationarity in NMARL. Based on experiments in realistic NMARL scenarios of adaptive traffic signal control and cooperative adaptive cruise control, an appropriate spatial discount factor effectively enhances the learning curves of non-communicative MARL algorithms, while NeurComm outperforms existing communication protocols in both learning efficiency and control performance.
Scaling model capacity has been vital in the success of deep learning. For a typical network, necessary compute resources and training time grow dramatically with model size. Conditional computation is a promising way to increase the number of parameters with a relatively small increase in resources. We propose a training algorithm that flexibly chooses neural modules based on the data to be processed. Both the decomposition and modules are learned end-to-end. In contrast to existing approaches, training does not rely on regularization to enforce diversity in module use. We apply modular networks both to image recognition and language modeling tasks, where we achieve superior performance compared to several baselines. Introspection reveals that modules specialize in interpretable contexts.
Multi-agent reinforcement learning systems aim to provide interacting agents with the ability to collaboratively learn and adapt to the behaviour of other agents. In many real-world applications, the agents can only acquire a partial view of the world. Here we consider a setting whereby most agents observations are also extremely noisy, hence only weakly correlated to the true state of the environment. Under these circumstances, learning an optimal policy becomes particularly challenging, even in the unrealistic case that an agents policy can be made conditional upon all other agents observations. To overcome these difficulties, we propose a multi-agent deep deterministic policy gradient algorithm enhanced by a communication medium (MADDPG-M), which implements a two-level, concurrent learning mechanism. An agents policy depends on its own private observations as well as those explicitly shared by others through a communication medium. At any given point in time, an agent must decide whether its private observations are sufficiently informative to be shared with others. However, our environments provide no explicit feedback informing an agent whether a communication action is beneficial, rather the communication policies must also be learned through experience concurrently to the main policies. Our experimental results demonstrate that the algorithm performs well in six highly non-stationary environments of progressively higher complexity, and offers substantial performance gains compared to the baselines.
Mortality prediction of diverse rare diseases using electronic health record (EHR) data is a crucial task for intelligent healthcare. However, data insufficiency and the clinical diversity of rare diseases make it hard for directly training deep learning models on individual disease data or all the data from different diseases. Mortality prediction for these patients with different diseases can be viewed as a multi-task learning problem with insufficient data and large task number. But the tasks with little training data also make it hard to train task-specific modules in multi-task learning models. To address the challenges of data insufficiency and task diversity, we propose an initialization-sharing multi-task learning method (Ada-Sit) which learns the parameter initialization for fast adaptation to dynamically measured similar tasks. We use Ada-Sit to train long short-term memory networks (LSTM) based prediction models on longitudinal EHR data. And experimental results demonstrate that the proposed model is effective for mortality prediction of diverse rare diseases.
When estimating the relevancy between a query and a document, ranking models largely neglect the mutual information among documents. A common wisdom is that if two documents are similar in terms of the same query, they are more likely to have similar relevance score. To mitigate this problem, in this paper, we propose a multi-agent reinforced ranking model, named MarlRank. In particular, by considering each document as an agent, we formulate the ranking process as a multi-agent Markov Decision Process (MDP), where the mutual interactions among documents are incorporated in the ranking process. To compute the ranking list, each document predicts its relevance to a query considering not only its own query-document features but also its similar documents features and actions. By defining reward as a function of NDCG, we can optimize our model directly on the ranking performance measure. Our experimental results on two LETOR benchmark datasets show that our model has significant performance gains over the state-of-art baselines. We also find that the NDCG shows an overall increasing trend along with the step of interactions, which demonstrates that the mutual information among documents helps improve the ranking performance.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا