No Arabic abstract
We present sum-sides for principal characters of all standard (i.e., integrable and highest-weight) irreducible modules for the affine Lie algebra $A_2^{(2)}$. We use modifications of five known Bailey pairs; three of these are sufficient to obtain all the necessary principal characters. We then use the technique of Bailey lattice appropriately extended to include out-of-bounds values of one of the parameters, namely, $i$. We demonstrate how the sum-sides break into six families depending on the level of the modules modulo 6, confirming a conjecture of McLaughlin--Sills.
In this note we consider representations of the group GL(n,F), where F is the field of real or complex numbers or, more generally, an arbitrary local field, in the space of equivariant line bundles over Grassmannians over the same field F. We study reducibility and composition series of such representations. Similar results were obtained already in [HL99,Al12,Zel80], but we give a short uniform proof in the general case, using the tools from [AGS15a]. We also indicate some applications to cosine transforms in integral geometry.
Following the ideas of Ginzburg, for a subgroup $K$ of a connected reductive $mathbb{R}$-group $G$ we introduce the notion of $K$-admissible $D$-modules on a homogeneous $G$-variety $Z$. We show that $K$-admissible $D$-modules are regular holonomic when $K$ and $Z$ are absolutely spherical. This framework includes: (i) the relative characters attached to two spherical subgroups $H_1$ and $H_2$, provided that the twisting character $chi_i$ factors through the maximal reductive quotient of $H_i$, for $i = 1, 2$; (ii) localization on $Z$ of Harish-Chandra modules; (iii) the generalized matrix coefficients when $K(mathbb{R})$ is maximal compact. This complements the holonomicity proven by Aizenbud--Gourevitch--Minchenko. The use of regularity is illustrated by a crude estimate on the growth of $K$-admissible distributions which based on tools from subanalytic geometry.
We construct a Young wall model for higher level $A_2^{(2)}$-type adjoint crystals. The Young walls and reduced Young walls are defined in connection with affin energy function. We prove that the affine crystal consisiting of reduced Young walls provides a realization of highest weight crystals $B(lambda)$ and $B(infty)$.
We study the algebras of differential operators invariant with respect to the scalar slash actions of real Jacobi groups of arbitrary rank. These algebras are non-commutative and are generated by their elements of orders 2 and 3. We prove that their centers are polynomial in one variable and are generated by the Casimir operator. For slash actions with invertible indices we also compute the characters of the IDO algebras: in rank exceeding 1 there are two, and in rank 1 there are in general five. In rank 1 we compute in addition all irreducible admissible representations of the IDO algebras.
For $G={rm GL}(n,q)$, the proportion $P_{n,q}$ of pairs $(chi,g)$ in ${rm Irr}(G)times G$ with $chi(g) eq 0$ satisfies $P_{n,q}to 0$ as $ntoinfty$.