Do you want to publish a course? Click here

Piecewise-analytic interfaces with weakly singular points of arbitrary order always scatter

59   0   0.0 ( 0 )
 Added by Long Li
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

It is proved that an inhomogeneous medium whose boundary contains a weakly singular point of arbitrary order scatters every incoming wave. Similarly, a compactly supported source term with weakly singular points on the boundary always radiates acoustic waves. These results imply the absence of non-scattering energies and non-radiating sources in a domain that is not $C^infty$-smooth. Local uniqueness results with a single far-field pattern are obtained for inverse source and inverse medium scattering problems. Our arguments provide a sufficient condition of the surface under which solutions to the Helmholtz equation admits no analytical continuation.



rate research

Read More

Assume that a bounded scatterer is embedded into an infinite homogeneous isotropic background medium in two dimensions. The refractive index function is supposed to be piecewise constant. If the scattering interface contains a weakly or strongly singular point, we prove that the scattered field cannot vanish identically. This particularly leads to the absence of non-scattering energies for piecewise analytic interfaces with a weakly singular point. Local uniqueness is obtained for shape identification problems in inverse medium scattering with a single far-field pattern.
A pair of anisotropic exceptional points (EPs) of arbitrary order are found in a class of non-Hermitian random systems with asymmetric hoppings. Both eigenvalues and eigenvectors exhibit distinct behaviors when these anisotropic EPs are approached from two orthogonal directions in the parameter space. For an order-$N$ anisotropic EP, the critical exponents $ u$ of phase rigidity are $(N-1)/2$ and $N-1$, respectively. These exponents are universal within the class. The order-$N$ anisotropic EPs split and trace out multiple ellipses of EPs of order $2$ in the parameter space. For some particular configurations, all the EP ellipses coalesce and form a ring of EPs of order $N$. Crossover to the conventional order-$N$ EPs with $ u=(N-1)/N$ is discussed.
68 - Seick Kim , Longjuan Xu 2020
We construct Greens functions for second order parabolic operators of the form $Pu=partial_t u-{rm div}({bf A} abla u+ boldsymbol{b}u)+ boldsymbol{c} cdot abla u+du$ in $(-infty, infty) times Omega$, where $Omega$ is an open connected set in $mathbb{R}^n$. It is not necessary that $Omega$ to be bounded and $Omega = mathbb{R}^n$ is not excluded. We assume that the leading coefficients $bf A$ are bounded and measurable and the lower order coefficients $boldsymbol{b}$, $boldsymbol{c}$, and $d$ belong to critical mixed norm Lebesgue spaces and satisfy the conditions $d-{rm div} boldsymbol{b} ge 0$ and ${rm div}(boldsymbol{b}-boldsymbol{c}) ge 0$. We show that the Greens function has the Gaussian bound in the entire $(-infty, infty) times Omega$.
We study the recovery of piecewise analytic density and stiffness tensor of a three-dimensional domain from the local dynamical Dirichlet-to-Neumann map. We give global uniqueness results if the medium is transversely isotropic with known axis of symmetry or orthorhombic with known symmetry planes on each subdomain. We also obtain uniqueness of a fully anisotropic stiffness tensor, assuming that it is piecewise constant and that the interfaces which separate the subdomains have curved portions. The domain partition need not to be known. Precisely, we show that a domain partition consisting of subanalytic sets is simultaneously uniquely determined.
We study the singular perturbation of an elastic energy with a singular weight. The minimization of this energy results in a multi-scale pattern formation. We derive an energy scaling law in terms of the perturbation parameter and prove that, although one cannot expect periodicity of minimizers, the energy of a minimizer is uniformly distributed across the sample. Finally, following the approach developed by Alberti and M{u}ller in 2001 we prove that a sequence of minimizers of the perturbed energies converges to a Young measure supported on functions of slope $pm 1$ and of period depending on the location in the domain and the weights in the energy.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا