Do you want to publish a course? Click here

Near-Infrared and Optical Observations of Type Ic SN2020oi and broad-lined Ic SN2020bvc: Carbon Monoxide, Dust and High-Velocity Supernova Ejecta

141   0   0.0 ( 0 )
 Added by Jeonghee Rho
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present near-infrared and optical observations of the Type Ic Supernova (SN) 2020oi in the galaxy M100 and the broad-lined Type Ic SN2020bvc in UGC 9379, using Gemini, LCO, SOAR, and other ground-based telescopes. The near-IR spectrum of SN2020oi at day 63 since the explosion shows strong CO emissions and a rising K-band continuum, which is the first unambiguous dust detection from a Type Ic SN. Non-LTE CO modeling shows that CO is still optically thick, and that the lower limit to the CO mass is 0.001 Msun. The dust temperature is 810 K, and the dust mass is ~10^(-5) Msun. We explore the possibilities that the dust is freshly formed in the ejecta, heated dust in the pre-existing circumstellar medium, and an infrared echo. The light curves of SN2020oi are consistent with a STELLA model with canonical explosion energy, 0.07 Msun Ni mass, and 0.7 Msun ejecta mass. A model of high explosion energy of ~10^(52) erg, 0.4 Msun Ni mass, 6.5 Msun ejecta mass with the circumstellar matter, reproduces the double-peaked light curves of SN2020bvc. We observe temporal changes of absorption features of the IR Ca~II triplet, S~I at 1.043 micron, and Fe~II at 5169 Angstrom. The blue-shifted lines indicate high velocities, up to 60,000 km/s for SN2020bvc and 20,000 km/s for SN2020oi, and the expansion velocity rapidly declines before the optical maximum. We present spectral signatures and diagnostics of CO and SiO molecular bands between 1.4 and 10 microns.



rate research

Read More

575 - A. Y. Q. Ho 2020
We present optical, radio, and X-ray observations of SN2020bvc (=ASASSN20bs; ZTF20aalxlis), a nearby ($z=0.0252$; $d$=114 Mpc) broad-lined (BL) Type Ic supernova (SN). Our observations show that SN2020bvc shares several properties in common with the Ic-BL SN2006aj, which was associated with the low-luminosity gamma-ray burst (LLGRB) 060218. First, the 10 GHz radio light curve is on the faint end of LLGRB-SNe ($L_mathrm{radio} approx 10^{37}$erg/s): we model our VLA observations (spanning 13-43 d) as synchrotron emission from a mildly relativistic ($v gtrsim 0.3c$) forward shock. Second, with Swift and Chandra we detect X-ray emission ($L_X approx 10^{41}$erg/s) that is not naturally explained as inverse Compton emission or as part of the same synchrotron spectrum as the radio emission. Third, high-cadence ($6times$/night) data from the Zwicky Transient Facility (ZTF) shows a double-peaked optical light curve, the first peak from shock-cooling emission from extended low-mass material (mass $M<10^{-2} M_odot$ at radius $R>10^{12}$cm) and the second peak from the radioactive decay of Ni-56. SN2020bvc is the first confirmed double-peaked Ic-BL SN discovered without a GRB trigger, and shows X-ray and radio emission similar to LLGRB-SNe: this is consistent with models in which the same mechanism produces both the LLGRB and the shock-cooling emission. For four of the five other nearby ($zlesssim0.05$) Ic-BL SNe with ZTF high-cadence data, we rule out a first peak like that seen in SN2006aj and SN2020bvc, i.e. that lasts $approx 1$d and reaches a peak luminosity $M approx -18$. X-ray and radio follow-up observations of future such events will establish whether double-peaked optical light curves are indeed predictive of LLGRB-like X-ray and radio emission.
273 - Deborah J. Hunter 2009
We present photometric and spectroscopic observations at optical and near-infrared wavelengths of the nearby type Ic SN 2007gr. These represent the most extensive data-set to date of any supernova of this sub-type, with frequent coverage from shortly after discovery to more than one year post-explosion. We deduce a rise time to B-band maximum of 11.5 pm 2.7 days. We find a peak B-band magnitude of M_B=-16.8, and light curves which are remarkably similar to the so-called hypernova SN 2002ap. In contrast, the spectra of SNe 2007gr and 2002ap show marked differences, not least in their respective expansion velocities. We attribute these differences primarily to the density profiles of their progenitor stars at the time of explosion i.e. a more compact star for SN 2007gr compared to SN 2002ap. From the quasi-bolometric light curve of SN 2007gr, we estimate that 0.076 $pm$ 0.010 Msun of 56Ni was produced in the explosion. Our near-infrared (IR) spectra clearly show the onset and disappearance of the first overtone of carbon monoxide (CO) between ~70 to 175 days relative to B-band maximum. The detection of the CO molecule implies that ionised He was not microscopically mixed within the carbon/oxygen layers. From the optical spectra, near-IR light curves, and colour evolution, we find no evidence for dust condensation in the ejecta out to about 400 days. Given the combination of unprecedented temporal coverage, and high signal-to-noise data, we suggest that SN 2007gr could be used as a template object for supernovae of this sub-class.
Unlike the ordinary supernovae (SNe) some of which are hydrogen and helium deficient (called Type Ic SNe), broad-lined Type Ic SNe (SNe Ic-bl) are very energetic events, and all SNe coincident with bona fide long duration gamma-ray bursts (LGRBs) are of Type Ic-bl. Understanding the progenitors and the mechanism driving SN Ic-bl explosions vs those of their SNe Ic cousins is key to understanding the SN-GRB relationship and jet production in massive stars. Here we present the largest set of host-galaxy spectra of 28 SNe Ic and 14 SN Ic-bl, all discovered before 2013 by the same untargeted survey, namely the Palomar Transient Factory (PTF). We carefully measure their gas-phase metallicities, stellar masses (M*s) and star-formation rates (SFRs) by taking into account recent progress in the metallicity field and propagating uncertainties correctly. We further re-analyze the hosts of 10 literature SN-GRBs using the same methods and compare them to our PTF SN hosts with the goal of constraining their progenitors from their local environments by conducting a thorough statistical comparison, including upper limits. We find that the metallicities, SFRs and M*s of our PTF SN Ic-bl hosts are statistically comparable to those of SN-GRBs, but significantly lower than those of the PTF SNe Ic. The mass-metallicity relations as defined by the SNe Ic-bl and SN-GRBs are not significantly different from the same relations as defined by the SDSS galaxies, in contrast to claims by earlier works. Our findings point towards low metallicity as a crucial ingredient for SN Ic-bl and SN-GRB production since we are able to break the degeneracy between high SFR and low metallicity. We suggest that the PTF SNe Ic-bl may have produced jets that were choked inside the star or were able break out of the star as unseen low-luminosity or off-axis GRBs.
228 - E. Pian 2016
Core-collapse stripped-envelope supernova (SN) explosions reflect the diversity of physical parameters and evolutionary paths of their massive star progenitors. We have observed the type Ic SN iPTF15dld (z = 0.047), reported by the Palomar Transient Factory. Spectra were taken starting 20 rest-frame days after maximum luminosity and are affected by a young stellar population background. Broad spectral absorption lines associated with the SN are detected over the continuum, similar to those measured for broad-lined, highly energetic SNe Ic. The light curve and maximum luminosity are instead more similar to those of low luminosity, narrow-lined Ic SNe. This suggests a behavior whereby certain highly-stripped-envelope SNe do not produce a large amount of Ni56, but the explosion is sufficiently energetic that a large fraction of the ejecta is accelerated to higher-than-usual velocities. We estimate SN iPTF15dld had a main sequence progenitor of 20-25 Msun, produced a Ni56 mass of ~0.1-0.2 Msun, had an ejecta mass of [2-10] Msun, and a kinetic energy of [1-18] e51 erg.
The diffuse interstellar bands (DIBs) are absorption features observed in optical and near-infrared spectra that are thought to be associated with carbon-rich polyatomic molecules in interstellar gas. However, because the central wavelengths of these bands do not correspond with electronic transitions of any known atomic or molecular species, their nature has remained uncertain since their discovery almost a century ago. Here we report on unusually strong DIBs in optical spectra of the broad-lined Type Ic supernova SN 2012ap that exhibit changes in equivalent width over short (~30 days) timescales. The 4428 and 6283 Angstrom DIB features get weaker with time, whereas the 5780 Angstrom feature shows a marginal increase. These nonuniform changes suggest that the supernova is interacting with a nearby source of the DIBs and that the DIB carriers possess high ionization potentials, such as small cations or charged fullerenes. We conclude that moderate-resolution spectra of supernovae with DIB absorptions obtained within weeks of outburst could reveal unique information about the mass-loss environment of their progenitor systems and provide new constraints on the properties of DIB carriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا