Do you want to publish a course? Click here

On the rate of crustal failures in young magnetars

84   0   0.0 ( 0 )
 Added by Clara Dehman Ms
 Publication date 2020
  fields Physics
and research's language is English
 Authors Clara Dehman




Ask ChatGPT about the research

The activity of magnetars is powered by their intense and dynamic magnetic fields and has been proposed as the trigger to extragalactic Fast Radio Bursts. Here we estimate the frequency of crustal failures in young magnetars, by computing the magnetic stresses in detailed magneto-thermal simulations including Hall drift and Ohmic dissipation. The initial internal topology at birth is poorly known but is likely to be much more complex than a dipole. Thus, we explore a wide range of initial configurations, finding that the expected rate of crustal failures varies by orders of magnitude depending on the initial magnetic configuration. Our results show that this rate scales with the crustal magnetic energy, rather than with the often used surface value of the dipolar component related to the spin-down torque. The estimated frequency of crustal failures for a given dipolar component can vary by orders of magnitude for different initial conditions, depending on how much magnetic energy is distributed in the crustal non-dipolar components, likely dominant in newborn magnetars. The quantitative reliability of the expected event rate could be improved by a better treatment of the magnetic evolution in the core and the elastic/plastic crustal response, here not included. Regardless of that, our results are useful inputs in modelling the outburst rate of young Galactic magnetars, and their relation with the Fast Radio Bursts in our and other galaxies.



rate research

Read More

173 - J.E. Horvath 2021
We revisit in this work a model for repeating Fast Radio Bursts based of the release of energy provoked by the magnetic field dynamics affecting a magnetars crust. We address the basic needs of such a model by solving the propagation approximately, and quantify the energetics and the radiation by bunches of charges in the so-called {it charge starved} region in the magnetosphere. The (almost) simultaneous emission of newly detected X-rays from SGR 1935+2154 is tentatively associated to a reconnection behind the propagation. The strength of $f$-mode gravitational radiation excited by the event is quantified, and more detailed studies of the non-linear (spiky) soliton solutions suggested.
88 - U. Geppert 1999
Soft Gamma-ray Repeaters (SGRs) and Anomalous X-ray Pulsars (AXPs) are interpreted as young highly magnetized neutron stars (NSs). Their X-ray luminosity in quiescence, exceeding 10^{35} erg s^{-1} cannot be explained as due to cooling of a highly magnetized NS, but requires as an extra heat source the decay of its magnetic field (MF). We study numerically the coupled evolution of the MF, temperature and spin period under the assumption that the currents maintaining the field are confined in the crust of the star. The decay of the field depends on the field strength itself (Hall-drift), on the temperature and injects heat into the star, but is controlled by neutrino emission. Finally we consider the spin down from magnetic dipole braking with this decaying field to track the long term evolution. We find reasonable initial conditions for the MF strength and structure to explain their current observational values both of their rotational period, its time derivative and the X-ray luminosity of AXPs and SGRs.the X-ray luminosity of AXPs and SGRs.
We analyze the slow periodicities identified in burst sequences from FRB 121102 and FRB 180916 with periods of about 16 and 160 d, respectively, while also addressing the absence of any fast periodicity that might be associated with the spin of an underlying compact object. Both phenomena can be accounted for by a young, highly magnetized, precessing neutron star that emits beamed radiation with significant imposed phase jitter. Sporadic narrow-beam emission into an overall wide solid angle can account for the necessary phase jitter, but the slow periodicities with 25 to 55% duty cycles constrain beam traversals to be significantly smaller. Instead, phase jitter may result from variable emission altitudes that yield large retardation and aberration delays. A detailed arrival-time analysis for triaxial precession includes wobble of the radio beam and the likely larger, cyclical torque resulting from the changes in the spin-magnetic moment angle. These effects will confound identification of the fast periodicity in sparse data sets longer than about a quarter of a precession cycle unless fitted for and removed as with orbital fitting. Stochastic spin noise, likely to be much larger than in radio pulsars, may hinder detection of any fast-periodicity in data spans longer than a few days. These decoherence effects will dissipate as FRB sources age, so they may evolve into objects with properties similar to Galactic magnetars.
Magnetars are young and highly magnetized neutron stars which display a wide array of X-ray activity including short bursts, large outbursts, giant flares and quasi-periodic oscillations, often coupled with interesting timing behavior including enhanced spin-down, glitches and anti-glitches. The bulk of this activity is explained by the evolution and decay of an ultrastrong magnetic field, stressing and breaking the neutron star crust, which in turn drives twists of the external magnetosphere and powerful magnetospheric currents. The population of detected magnetars has grown to about 30 objects and shows unambiguous phenomenological connection with very highly magnetized radio pulsars. Recent progress in magnetar theory includes explanation of the hard X-ray component in the magnetar spectrum and development of surface heating models, explaining the sources remarkable radiative output.
65 - D. Cerri-Serim 2017
We represent noise strength analysis of Anomalous X-Ray Pulsars (AXPs) 4U 0142+61, 1RXS J170849.9-400910, 1E 1841-045, 1E 2259+586 and Soft Gamma Repeaters (SGRs) SGR J1833-0832, SWIFT J1822.3-1606 and SWIFT J1834.9-0846 together with the X-Ray binaries GX 1+4 and 4U 1907+09 for comparison with accreting sources. Using our timing solutions, we extracted residuals of pulse arrival times after removal of spin down trends and we calculated assoicated noise strength of each source. Our preliminary results indicate that the noise strength is scaling up with spin-down rate. This indicates that, increase in spin-down rate leads to more torque noise on the magnetars. In addition, we present our analysis with Bayesian statistics on the previously reported transient QPO feature of 4U 1907+09.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا