No Arabic abstract
Thanks to more and more gamma-ray bursts with measured redshift and extended emission detected by the recent space telescopes, it is urgent and possible to check whether those previous energy correlations still satisfy for the particular sample involving only the bursts accompanied by tail radiations. Using 20 long and 22 short bursts with extended emission, we find that the popular $gamma$-ray energy correlations of the intrinsic peak energy versus the isotropic energy (Amati relation) and the intrinsic peak energy versus the peak luminosity (Yonetoku relation) do exist in either short or long bursts. However, these gamma-ray bursts with extended emissions are much better to be reclassified into two subgroups of E-I and E-II that make the above energy correlations more tight. As proposed by Zhang et al. (2018), the energy correlations can be utilized to distinguish these kinds of gamma-ray bursts in the plane of bolometric fluence versus peak energy as well. Interestingly, the peculiar short GRB 170817A belongs to the E-I group in the fluence versus peak energy plane, but it is an outlier of both Amati and Yonetoku relations even though the off-axis effect has been corrected. Furthermore, we compare the radiation features between the extended emissions and the prompt gamma-rays in order to search for their possible connections. Taking into account all these factors, we conclude that gamma-ray bursts with extended emission are still required to model with dichotomic groups, namely E-I and E-II classes, respectively, which hints that they might be of different origins.
We consider some general implications of bright gamma-ray counterparts to fast radio bursts (FRBs). We show that even if these manifest in only a fraction of FRBs, gamma-ray detections with current satellites (including Swift) can provide stringent constraints on cosmological FRB models. If the energy is drawn from the magnetic energy of a compact object such as a magnetized neutron star, the sources should be nearby and be very rare. If the intergalactic medium is responsible for the observed dispersion measure, the required gamma-ray energy is comparable to that of the early afterglow or extended emission of short gamma-ray bursts. While this can be reconciled with the rotation energy of compact objects, as expected in many merger scenarios, the prompt outflow that yields the gamma-rays is too dense for radio waves to escape. Highly relativistic winds launched in a precursor phase, and forming a wind bubble, may avoid the scattering and absorption limits and could yield FRB emission. Largely independent of source models, we show that detectable radio afterglow emission from gamma-ray bright FRBs can reasonably be anticipated. Gravitational wave searches can also be expected to provide useful tests.
The number of Gamma-Ray Bursts (GRBs) detected at high energies ($sim,0.1-100$ GeV) has seen a rapid increase over the last decade, thanks to observations from the Fermi-Large Area Telescope. The improved statistics and quality of data resulted in a better characterisation of the high-energy emission properties and in stronger constraints on theoretical models. In spite of the many achievements and progresses, several observational properties still represent a challenge for theoretical models, revealing how our understanding is far from being complete. This paper reviews the main spectral and temporal properties of $sim,0.1-100$ GeV emission from GRBs and summarises the most promising theoretical models proposed to interpret the observations. Since a boost for the understanding of GeV radiation might come from observations at even higher energies, the present status and future prospects for observations at very-high energies (above $sim$ 100 GeV) are also discussed. The improved sensitivity of upcoming facilities, coupled to theoretical predictions, supports the concrete possibility for future ground GRB detections in the high/very-high energy domain.
The initial pulse complex (IPC) in short gamma-ray bursts is sometimes accompanied by a softer, low-intensity extended emission (EE) component. In cases where such a component is not observed, it is not clear if it is present but below the detection threshold. Using Bayesian Block (BB) methods, we measure the EE component and show that it is present in one quarter of a Swift/BAT sample of 51 short bursts, as was found for the Compton/BATSE sample. We simulate bursts with EE to calibrate the BAT threshold for EE detection and show that this component would have been detected in nearly half of BAT short bursts if it were present, to intensities ~ 10^-2 counts cm^-2 s^-1, a factor of five lower than actually observed in short bursts. In the BAT sample the ratio of average EE intensity to IPC peak intensity, Rint, ranges over a factor of 25, Rint ~ 3 x 10^-3 to 8 x 10^-2. In comparison, for the average of the 39 bursts without an EE component, the 2-sigma upper limit is Rint < 8 x 10^-4. These results suggest that a physical threshold effect operates near Rint ~ few x 10^-3, below which the EE component is not manifest.
The recent association of several short gamma-ray bursts (GRBs) with early type galaxies with low star formation rate demonstrates that short bursts arise from a different progenitor mechanism than long bursts. However, since the duration distributions of the two classes overlap, membership is not always easily established. The picture is complicated by the occasional presence of softer, extended emission lasting tens of seconds after the initial spike-like emission. We show that the fundamental defining characteristic of the short burst class is that the initial spike exhibits negligible spectral evolution at energies above ~ 25 keV. This behavior is nearly ubiquitous for the 260 bursts with T90 < 2 s, where the BATSE TTE data completely included the initial spike. The same signature obtains for one HETE-2 and six Swift/BAT short bursts. Analysis of a small sample of short BATSE bursts with the most intense extended emission shows that the same lack of evolution on the pulse timescale obtains for the extended emission. The dynamic range in the ratio of peak intensities, spike : extended, is ~ 10^4. For some bursts, the extended emission is only a factor of 2-5 less intense. A high Lorentz factor, ~ 500-1000, might explain the negligible lags observed in short bursts.
Some short GRBs are followed by longer extended emission, lasting anywhere from ~10 to ~100 s. These short GRBs with extended emission (EE) can possess observational characteristics of both short and long GRBs (as represented by GRB 060614), and the traditional classification based on the observed duration places some of them in the long GRB class. While GRBs with EE pose a challenge to the compact binary merger scenario, they may therefore provide an important link between short and long duration events. To identify the population of GRBs with EE regardless of their initial classifications, we performed a systematic search of short GRBs with EE using all available data (up to February 2013) of both Swift/BAT and Fermi/GBM. The search identified 16 BAT and 14 GBM detected GRBs with EE, several of which are common events observed with both detectors. We investigated their spectral and temporal properties for both the spikes and the EE, and examined correlations among these parameters. Here we present the results of the systematic search as well as the properties of the identified events. Finally, their properties are also compared with short GRBs with EE observed with BATSE, identified through our previous search effort. We found several strong correlations among parameters, especially when all of the samples were combined. Based on our results, a possible progenitor scenario of two-component jet is discussed.