No Arabic abstract
We present a new mechanism for inflation which exhibits a speed limit on scalar motion, generating accelerated expansion even on a steep potential. This arises from explicitly integrating out the short modes of additional fields coupled to the inflaton $phi$ via a dimension six operator, yielding an expression for the effective action which includes a nontrivial (logarithmic) function of $(partialphi)^2$. The speed limit appears at the branch cut of this logarithm arising in a large flavor expansion, similarly to the square root branch cut in DBI inflation arising in a large color expansion. Finally, we describe observational constraints on the parameters of this model.
We discuss the implications for cosmic microwave background (CMB) observables, of a class of pre-inflationary dynamics suggested by string models where SUSY is broken due to the presence of D-branes and orientifolds preserving incompatible portions of it. In these models the would-be inflaton is forced to emerge from the initial singularity climbing up a mild exponential potential, until it bounces against a steep exponential potential of brane SUSY breaking scenarios, and as a result the ensuing descent gives rise to an inflationary epoch that begins when the system is still well off its eventual attractor. If a pre-inflationary climbing phase of this type had occurred within 6-7 e-folds of the horizon exit for the largest observable wavelengths, displacement off the attractor and initial-state effects would conspire to suppress power in the primordial scalar spectrum, enhancing it in the tensor spectrum and typically superposing oscillations on both. We investigate these imprints on CMB observables over a range of parameters, examine their statistical significance, and provide a semi-analytic rationale for our results. It is tempting to ascribe at least part of the large-angle anomalies in the CMB to pre-inflationary dynamics of this type.
We develop a Mellin space approach to boundary correlation functions in anti-de Sitter (AdS) and de Sitter (dS) spaces. Using the Mellin-Barnes representation of correlators in Fourier space, we show that the analytic continuation between AdS$_{d+1}$ and dS$_{d+1}$ is encoded in a collection of simple relative phases. This allows us to determine the late-time tree-level three-point correlators of spinning fields in dS$_{d+1}$ from known results for Witten diagrams in AdS$_{d+1}$ by multiplication with a simple trigonometric factor. At four point level, we show that Conformal symmetry fixes exchange four-point functions both in AdS$_{d+1}$ and dS$_{d+1}$ in terms of the dual Conformal Partial Wave (which in Fourier space is a product of boundary three-point correlators) up to a factor which is determined by the boundary conditions. In this work we focus on late-time four-point correlators with external scalars and an exchanged field of integer spin-$ell$. The Mellin-Barnes representation makes manifest the analytic structure of boundary correlation functions, providing an analytic expression for the exchange four-point function which is valid for general $d$ and generic scaling dimensions, in particular massive, light and (partially-)massless fields. When $d=3$ we reproduce existing explicit results available in the literature for external conformally coupled and massless scalars. From these results, assuming the weak breaking of the de Sitter isometries, we extract the corresponding correction to the inflationary three-point function of general external scalars induced by a general spin-$ell$ field at leading order in slow roll. These results provide a step towards a more systematic understanding of de Sitter observables at tree level and beyond using Mellin space methods.
Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.
In a series of recent papers Kallosh, Linde, and collaborators have provided a unified description of single-field inflation with several types of potentials, ranging from power law to supergravity, in terms of just one parameter $alpha$. These so-called $alpha$-attractors predict a spectral index $n_{s}$ and a tensor-to-scalar ratio $r$, which are fully compatible with the latest Planck data. The only common feature of all $alpha$-attractors is a non-canonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a non-canonical scalar kinetic energy, we explore the case of non-analytic potentials. We find the functional form that corresponds to quasi-scale invariant gravitational models in the Jordan frame, characterised by a universal relation between $r$ and $n_{s}$ that fits the observational data but is clearly distinct from the one of the $alpha$-attractors. It is known that the breaking of the exact classical scale-invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of non-analytic potentials in the non-canonical Einstein frame that are physically equivalent to a class of models in the Jordan frame, with scale-invariance softly broken by one-loop quantum corrections.
We investigate the interplay between moduli dynamics and inflation, focusing on the KKLT-scenario and cosmological $alpha$-attractors. General couplings between these sectors can induce a significant backreaction and potentially destroy the inflationary regime; however, we demonstrate that this generically does not happen for $alpha$-attractors. Depending on the details of the superpotential, the volume modulus can either be stable during the entire inflationary trajectory, or become tachyonic at some point and act as a waterfall field, resulting in a sudden end of inflation. In the latter case there is a universal supersymmetric minimum where the scalars end up, preventing the decompactification scenario. The gravitino mass is independent from the inflationary scale with no fine-tuning of the parameters. The observational predictions conform to the universal value of attractors, fully compatible with the Planck data, with possibly a capped number of e-folds due to the interplay with moduli.