Do you want to publish a course? Click here

A scenario for inflationary magnetogenesis without strong coupling problem

119   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Cosmological magnetic fields pervade the entire universe, from small to large scales. Since they apparently extend into the intergalactic medium, it is tantalizing to believe that they have a primordial origin, possibly being produced during inflation. However, finding consistent scenarios for inflationary magnetogenesis is a challenging theoretical problem. The requirements to avoid an excessive production of electromagnetic energy, and to avoid entering a strong coupling regime characterized by large values for the electromagnetic coupling constant, typically allow one to generate only a tiny amplitude of magnetic field during inflation. We propose a scenario for building gauge-invariant models of inflationary magnetogenesis potentially free from these issues. The idea is to derivatively couple a dynamical scalar, not necessarily the inflaton, to fermionic and electromagnetic fields during the inflationary era. Such couplings give additional freedom to control the time-dependence of the electromagnetic coupling constant during inflation. This fact allows us to find conditions to avoid the strong coupling problems that affect many of the existing models of magnetogenesis. We do not need to rely on a particular inflationary set-up for developing our scenario, that might be applied to different realizations of inflation. On the other hand, specific requirements have to be imposed on the dynamics of the scalar derivatively coupled to fermions and electromagnetism, that we are able to satisfy in an explicit realization of our proposal.



rate research

Read More

We describe a simple scenario of inflationary magnetogenesis based on a helical coupling to electromagnetism. It allows to generate helical magnetic fields of strength of order up to $10^{- 7},text{G}$, when extrapolated to the current epoch, in a narrow spectral band centered at any physical wavenumber by adjusting the model parameters. Additional constraints on magnetic fields arise from the considerations of baryogenesis and, possibly, from the Schwinger effect of creation of charged particle-antiparticle pairs.
133 - D. G. Coyne 2006
A different reason for the apparent weakness of the gravitational interaction is advanced, and its consequences for Hawking evaporation of a Schwarzschild black hole are investigated. A simple analytical formulation predicts that evaporating black holes will undergo a type of phase transition resulting in variously long-lived objects of reasonable sizes, with normal thermodynamic properties and inherent duality characteristics. Speculations on the implications for particle physics and for some recently-advanced new paradigms are explored.
411 - Yuri Shtanov 2019
We consider helical coupling to electromagnetism and present a simple scenario of evolution of the coupling function leading to a viable inflationary magnetogenesis without the problem of back-reaction. In this scenario, helical magnetic fields of strength of order up to $10^{- 7},text{G}$, when extrapolated to the current epoch, can be generated in a narrow spectral band centered at any reasonable wavenumber by adjusting the model parameters. We discuss implications of this model for baryogenesis, which impose additional constraints on the strength and correlation length of magnetic field.
We study the Wigner function for the inflationary tensor perturbation defined in the real phase space. We compute explicitly the Wigner function including the contributions from the cubic self-interaction Hamiltonian of tensor perturbations. Then we argue that it is no longer an appropriate description for the probability distribution in the sense that quantum nature allows negativity around vanishing phase variables. This comes from the non-Gaussian wavefunction in the mixed state as a result of the non-linear interaction between super- and sub-horizon modes. We also show that this is related to the explicit infrared divergence in the Wigner function, in contrast to the trace of the density matrix.
In a series of recent papers Kallosh, Linde, and collaborators have provided a unified description of single-field inflation with several types of potentials, ranging from power law to supergravity, in terms of just one parameter $alpha$. These so-called $alpha$-attractors predict a spectral index $n_{s}$ and a tensor-to-scalar ratio $r$, which are fully compatible with the latest Planck data. The only common feature of all $alpha$-attractors is a non-canonical kinetic term with a pole, and a potential analytic around the pole. In this paper, starting from the same Einstein frame with a non-canonical scalar kinetic energy, we explore the case of non-analytic potentials. We find the functional form that corresponds to quasi-scale invariant gravitational models in the Jordan frame, characterised by a universal relation between $r$ and $n_{s}$ that fits the observational data but is clearly distinct from the one of the $alpha$-attractors. It is known that the breaking of the exact classical scale-invariance in the Jordan frame can be attributed to one-loop corrections. Therefore we conclude that there exists a class of non-analytic potentials in the non-canonical Einstein frame that are physically equivalent to a class of models in the Jordan frame, with scale-invariance softly broken by one-loop quantum corrections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا