Do you want to publish a course? Click here

A novel black-hole mass scaling relation based on Coronal lines and supported by accretion predictions

157   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Getting insights on the shape and nature of the ionizing continuum in astronomical objects is often done via indirect methods as high energy photons are absorbed by our Galaxy. This work explores the ionization continuum of active galactic nuclei (AGN) using the ubiquitous coronal lines. Using bona-fide BH mass estimates from reverberation mapping and the line ratio [Si VI] 1.963 micron/Br$gamma_{rm broad}$ as tracer of the AGN ionizing continuum, a novel BH-mass scaling relation of the form log($M_{rm BH}) = (6.40pm 0.17) - (1.99pm 0.37) times$ log ([Si VI]/Br$gamma_{rm broad})$, over the BH mass interval, $10^6 - 10^8$ M$_{odot}$ with dispersion 0.47 dex is found. Following on the thin accretion disc approximation and after surveying a basic parameter space for coronal lines production, we believe that a key parameter driving this anti-correlation is the effective temperature of the accretion disc, this being effectively sampled by the coronal line gas. Accordingly, the observed anti-correlation becomes formally in line with the thin accretion disc prediction $T_{rm{disc}} propto {M_{rm BH}}^{-1/4}$.



rate research

Read More

85 - F. Ricci , F. Onori (2 2016
Accurately weigh the masses of SMBH in AGN is currently possible for only a small group of local and bright broad-line AGN through reverberation mapping (RM). Statistical demographic studies can be carried out considering the empirical scaling relation between the size of the BLR and the AGN optical continuum luminosity. However, there are still biases against low-luminosity or reddened AGN, in which the rest-frame optical radiation can be severely absorbed/diluted by the host and the BLR emission lines could be hard to detect. Our purpose is to widen the applicability of virial-based SE relations to reliably measure the BH masses also for low-luminosity or intermediate/type 2 AGN that are missed by current methodology. We achieve this goal by calibrating virial relations based on unbiased quantities: the hard X-ray luminosities, in the 2-10 keV and 14-195 keV bands, that are less sensitive to galaxy contamination, and the FWHM of the most important rest-frame NIR and optical BLR emission lines. We built a sample of RM AGN having both X-ray luminosity and broad optical/NIR FWHM measurements available in order to calibrate new virial BH mass estimators. We found that the FWHM of the H$alpha$, H$beta$ and NIR lines (i.e. Pa$alpha$, Pa$beta$ and HeI$lambda$10830) all correlate each other having negligible or small offsets. This result allowed us to derive virial BH mass estimators based on either the 2-10 keV or 14-195 keV luminosity. We took also into account the recent determination of the different virial coefficients $f$ for pseudo and classical bulges. By splitting the sample according to the bulge type and adopting separate $f$ factors we found that our virial relations predict BH masses of AGN hosted in pseudobulges $sim$0.5 dex smaller than in classical bulges. Assuming the same average $f$ factor for both populations, a difference of $sim$0.2 dex is still found.
We present new thermal equilibrium solutions for optically thin and thick disks incorporating magnetic fields. The purpose of this paper is to explain the bright hard state and the bright/slow transition observed in the rising phases of outbursts in BHCs. On the basis of the results of 3D MHD simulations, we assume that magnetic fields inside the disk are turbulent and dominated by the azimuthal component and that the azimuthally averaged Maxwell stress is proportional to the total pressure. We prescribe the magnetic flux advection rate to determine the azimuthal magnetic flux at a given radius. We find magnetically supported, thermally stable solutions for both optically thin and thick disks, in which the heating enhanced by the strong magnetic field balances the radiative cooling. The temperature in a low-$beta$ disk is lower than that in an ADAF/RIAF but higher than that in a standard disk. We also study the radial dependence of the thermal equilibrium solutions. The optically thin, low-$beta$ branch extends to $ dot M gtrsim 0.1 {dot M}_{rm Edd}$, in which the temperature anti-correlates with the mass accretion rate. Thus optically thin low-$beta$ disks can explain the bright hard state. Optically thick, low-$beta$ disks have the radial dependence of the effective temperature $T_{rm eff} propto varpi^{-3/4}$. Such disks will be observed as staying in a high/soft state. Furthermore, limit cycle oscillations between an optically thick low-$beta$ disk and a slim disk will occur because the optically thick low-$beta$ branch intersects with the radiation pressure dominated standard disk branch. These limit cycle oscillations will show a smaller luminosity variation than that between a standard disk and a slim disk.
We use the microlensing variability observed for nine gravitationally lensed quasars to show that the accretion disk size at 2500 Angstroms is related to the black hole mass by log(R_2500/cm) = (15.6+-0.2) + (0.54+-0.28)log(M_BH/10^9M_sun). This scaling is consistent with the expectation from thin disk theory (R ~ M_BH^(2/3)), but it implies that black holes radiate with relatively low efficiency, log(eta) = -1.29+-0.44 + log(L/L_E) where eta=L/(Mdot c^2). These sizes are also larger, by a factor of ~3, than the size needed to produce the observed 0.8 micron quasar flux by thermal radiation from a thin disk with the same T ~ R^(-3/4) temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate.
We create a baseline of the black hole (BH) mass (MBH) - stellar-velocity dispersion (sigma) relation for active galaxies, using a sample of 66 local (0.02<z<0.09) Seyfert-1 galaxies, selected from the Sloan Digital Sky Survey (SDSS). Analysis of SDSS images yields AGN luminosities free of host-galaxy contamination and morphological classification. 51/66 galaxies have spiral morphology. 28 bulges have Sersic index n<2 and are considered candidate pseudo bulges, with eight being definite pseudo bulges based on multiple classification criteria met. Only 4/66 galaxies show sign of interaction/merging. High signal-to-noise ratio Keck spectra provide the width of the broad Hbeta emission line free of FeII emission and stellar absorption. AGN luminosity and Hbeta line widths are used to estimate MBH. The Keck-based spatially-resolved kinematics is used to determine stellar-velocity dispersion within the spheroid effective radius. We find that sigma can vary on average by up to 40% across definitions commonly used in the literature, emphasizing the importance of using self-consistent definitions in comparisons and evolutionary studies. The MBH-sigma relation for our Seyfert-1 galaxies has the same intercept and scatter as that of reverberation-mapped AGNs as well as quiescent galaxies, consistent with the hypothesis that our single epoch MBH estimator and sample selection do not introduce significant biases. Barred galaxies, merging galaxies, and those hosting pseudo bulges do not represent outliers in the MBH-sigma relation. This is in contrast with previous work, although no firm conclusion can be drawn due to the small sample size and limited resolution of the SDSS images.
We present a discovery of the correlation between the X-ray spectral (photon) index and mass accretion rate observed in AGN NGC 4051. We analyzed spectral transition episodes observed in NGC 4051 using XMM/Newton, Suzaku and RXTE. We applied a scaling technique for a black hole (BH) mass evaluation which uses a correlation between the photon index and normalization of the seed (disk) component, which is proportional to a mass accretion rate. We developed an analytical model that shows the spectral (photon) index of the BH emergent spectrum undergoes an evolution from lower to higher values depending on a mass accretion rate in the accretion disk. We considered Cygnus X-1 and GRO~J1550-564 as reference sources for which distances, inclination angles and the BH masses are evaluated by dynamical measurements. Application of the scaling technique for the photon index-mass accretion rate correlation provides an estimate of the black hole mass in NGC 4051 to be more than 6x10^5 solar masses.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا