No Arabic abstract
We use the microlensing variability observed for nine gravitationally lensed quasars to show that the accretion disk size at 2500 Angstroms is related to the black hole mass by log(R_2500/cm) = (15.6+-0.2) + (0.54+-0.28)log(M_BH/10^9M_sun). This scaling is consistent with the expectation from thin disk theory (R ~ M_BH^(2/3)), but it implies that black holes radiate with relatively low efficiency, log(eta) = -1.29+-0.44 + log(L/L_E) where eta=L/(Mdot c^2). These sizes are also larger, by a factor of ~3, than the size needed to produce the observed 0.8 micron quasar flux by thermal radiation from a thin disk with the same T ~ R^(-3/4) temperature profile. More sophisticated disk models are clearly required, particularly as our continuing observations improve the precision of the measurements and yield estimates of the scaling with wavelength and accretion rate.
We put active galactic nuclei (AGNs) with low-mass black holes on the fundamental plane of black hole accretion---the plane that relates X-ray emission, radio emission, and mass of an accreting black hole---to test whether or not the relation is universal for both stellar-mass and supermassive black holes. We use new Chandra X-ray and Very Large Array radio observations of a sample of black holes with masses less than $10^{6.3} M_{scriptscriptstyle odot}$, which have the best leverage for determining whether supermassive black holes and stellar-mass black holes belong on the same plane. Our results suggest that the two different classes of black holes both belong on the same relation. These results allow us to conclude that the fundamental plane is suitable for use in estimating supermassive black hole masses smaller than $sim 10^7 M_{scriptscriptstyle odot}$, in testing for intermediate-mass black holes, and in estimating masses at high accretion rates.
In order to investigate the dependence of quasar optical-UV variability on fundamental physical parameters like black hole mass, we have matched quasars from the QUEST1 variability survey with broad-lined objects from the SDSS. Black hole masses and bolometric luminosities are estimated from Sloan spectra, and variability amplitudes from the QUEST1 light curves. Long-term variability amplitudes (rest-frame time scales 0.5--2 yrs) are found to correlate with black hole mass at the 99% significance level or better. This means that quasars with larger black hole masses have larger percentage flux variations. Partial rank correlation analysis shows that the correlation cannot explained by obvious selection effects inherent to flux-limited samples. We discuss whether the correlation is a manifestation of a relation between BH mass and accretion disk thermal time scales, or if it is due to changes in the optical depth of the accretion disk with black hole mass. Perhaps the most likely explanation is that the more massive black holes are starving, and produce larger flux variations because they do not have a steady inflow of gaseous fuel.
Supermassive black hole binaries are likely to accrete interstellar gas through a circumbinary disk. Shortly before merger, the inner portions of this circumbinary disk are subject to general relativistic effects. To study this regime, we approximate the spacetime metric of close orbiting black holes by superimposing two boosted Kerr-Schild terms. After demonstrating the quality of this approximation, we carry out very long-term general relativistic magnetohydrodynamic simulations of the circumbinary disk. We consider black holes with spin dimensionless parameters of magnitude 0.9, in one simulation parallel to the orbital angular momentum of the binary, but in another anti-parallel. These are contrasted with spinless simulations. We find that, for a fixed surface mass density in the inner circumbinary disk, aligned spins of this magnitude approximately reduce the mass accretion rate by 14% and counter-aligned spins increase it by 45%, leaving many other disk properties unchanged.
We use thirteen seasons of R-band photometry from the 1.2m Leonard Euler Swiss Telescope at La Silla to examine microlensing variability in the quadruply-imaged lensed quasar WFI 2026-4536. The lightcurves exhibit ${sim},0.2,text{mag}$ of uncorrelated variability across all epochs and a prominent single feature of ${sim},0.1,text{mag}$ within a single season. We analyze this variability to constrain the size of the quasars accretion disk. Adopting a nominal inclination of 60$^text{o}$, we find an accretion disk scale radius of $log(r_s/text{cm}) = 15.74^{+0.34}_{-0.29}$ at a rest-frame wavelength of $2043,unicode{xC5}$, and we estimate a black hole mass of $log(M_{text{BH}}/M_{odot}) = 9.18^{+0.39}_{-0.34}$, based on the CIV line in VLT spectra. This size measurement is fully consistent with the Quasar Accretion Disk Size - Black Hole Mass relation, providing another system in which the accretion disk is larger than predicted by thin disk theory.
Models of jet production in black hole systems suggest that the properties of the accretion disk - such as its mass accretion rate, inner radius, and emergent magnetic field - should drive and modulate the production of relativistic jets. Stellar-mass black holes in the low/hard state are an excellent laboratory in which to study disk-jet connections, but few coordinated observations are made using spectrometers that can incisively probe the inner disk. We report on a series of 20 Suzaku observations of Cygnus X-1 made in the jet-producing low/hard state. Contemporaneous radio monitoring was done using the Arcminute MicroKelvin Array radio telescope. Two important and simple results are obtained: (1) the jet (as traced by radio flux) does not appear to be modulated by changes in the inner radius of the accretion disk; and (2) the jet is sensitive to disk properties, including its flux, temperature, and ionization. Some more complex results may reveal aspects of a coupled disk-corona-jet system. A positive correlation between the reflected X-ray flux and radio flux may represent specific support for a plasma ejection model of the corona, wherein the base of a jet produces hard X-ray emission. Within the framework of the plasma ejection model, the spectra suggest a jet base with v/c ~ 0.3, or the escape velocity for a vertical height of z ~ 20 GM/c^2 above the black hole. The detailed results of X-ray disk continuum and reflection modeling also suggest a height of z ~ 20 GM/c^2 for hard X-ray production above a black hole, with a spin in the range 0.6 < a < 0.99. This height agrees with X-ray time lags recently found in Cygnus X-1. The overall picture that emerges from this study is broadly consistent with some jet-focused models for black hole spectral energy distributions in which a relativistic plasma is accelerated at z = 10-100 GM/c^2.