Do you want to publish a course? Click here

Progress on band structure engineering of twisted bilayer and two-dimensional moire heterostructures

102   0   0.0 ( 0 )
 Added by Wei Yao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Artificially constructed van der Waals heterostructures (vdWHs) provide an ideal platform for realizing emerging quantum phenomena in condensed matter physics. Two methods for building vdWHs have been developed: stacking two-dimensional (2D) materials into a bilayer structure with different lattice constants, or with different orientations. The interlayer coupling stemming from commensurate or incommensurate superlattice pattern plays an important role in vdWHs for modulating the band structures and generating new electronic states. In this article, we review a series of novel quantum states discovered in two model vdWH systems -- graphene/hexagonal boron nitride (hBN) hetero-bilayer and twisted bilayer graphene (tBLG), and discuss how the electronic structures are modified by such stacking and twisting. We also provide perspectives for future studies on hetero-bilayer materials, from which an expansion of 2D material phase library is expected.



rate research

Read More

We have predicted a new phase of nitrogen with octagon structure in our previous study, which we referred to as octa-nitrogene (ON). In this work, we make further investigation on its electronic structure. The phonon band structure has no imaginary phonon modes, which indicates that ON is dynamically stable. Using ab initio molecular dynamic simulations, the structure is found to stable up to 100K, and ripples that are similar to that of graphene is formed on the ON sheet. Based on DFT calculation on its band structure, single layer ON is a 2D large-gap semiconductor with a band gap of 4.7eV. Because of inter-layer interaction, stackings can decrease the band gap. Biaxial tensile strain and perpendicular electric field can greatly influence the band structure of ON, in which the gap decreases and eventually closes as the biaxial tensile strain or the perpendicular electric field increases. In other words, both biaxial tensile strain and perpendicular electric field can drive the insulator-to-metal transition, and thus can be used to engineer the band gap of ON. From our results, ON has potential applications in the electronics, semiconductors, optics and spintronics, and so on.
153 - Chao Ma , Qiyue Wang , Scott Mills 2019
Recently twisted bilayer graphene (t-BLG) emerges as a new strongly correlated physical platform near a magic twist angle, which hosts many exciting phenomena such as the Mott-like insulating phases, unconventional superconducting behavior and emergent ferromagnetism. Besides the apparent significance of band flatness, band topology may be another critical element in determining strongly correlated twistronics yet receives much less attention. Here we report compelling evidence for nontrivial noninteracting band topology of t-BLG moire Dirac bands through a systematic nonlocal transport study, in conjunction with an examination rooted in $K$-theory. The moire band topology of t-BLG manifests itself as two pronounced nonlocal responses in the electron and hole superlattice gaps. We further show that the nonlocal responses are robust to the interlayer electric field, twist angle, and edge termination, exhibiting a universal scaling law. While an unusual symmetry of t-BLG trivializes Berry curvature, we elucidate that two $Z_2$ invariants characterize the topology of the moire Dirac bands, validating the topological edge origin of the observed nonlocal responses. Our findings not only provide a new perspective for understanding the emerging strongly correlated phenomena in twisted van der Waals heterostructures, but also suggest a potential strategy to achieve topologically nontrivial metamaterials from topologically trivial quantum materials based on twist engineering.
We report the infrared transmission measurement on electrically gated twisted bilayer graphene. The optical absorption spectrum clearly manifests the dramatic changes such as the splitting of inter-linear-band absorption step, the shift of inter-van Hove singularity transition peak, and the emergence of very strong intra-valence (intra-conduction) band transition. These anomalous optical behaviors demonstrate consistently the non-rigid band structure modification created by the ion-gel gating through the layer-dependent Coulomb screening. We propose that this screening-driven band modification is an universal phenomenon that persists to other bilayer crystals in general, establishing the electrical gating as a versatile technique to engineer the band structures and to create new types of optical absorptions that can be exploited in electro-optical device application.
We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the magic angle driven by circularly polarized laser pulses. Employing a full Moire-unit-cell tight-binding Hamiltonian based on first-principles electronic structure we show that the band topology in the bilayer, at twisting angles above 1.05$^circ$, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature of a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or mid-infrared photon-energy regimes. This implies that Moire superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium.
Moire superlattices of van der Waals heterostructures provide a powerful new way to engineer the electronic structures of two-dimensional (2D) materials. Many novel quantum phenomena have emerged in different moire heterostructures, such as correlated insulators, superconductors, and Chern insulators in graphene systems and moire excitons in transition metal dichalcogenide (TMDC) systems. Twisted phosphorene offers another attractive system to explore moire physics because phosphorene features an anisotropic rectangular lattice, different from the isotropic hexagonal lattice in graphene and TMDC. Here we report emerging anisotropic moire optical transitions in twisted monolayer/bilayer phosphorene. The optical resonances in phosphorene moire superlattice depend sensitively on the twist angle between the monolayer and bilayer. Surprisingly, even for a twist angle as large as 19{deg} the moire heterostructure exhibits optical resonances completely different from those in the constituent monolayer and bilayer phosphorene. The new moire optical resonances exhibit strong linear polarization, with the principal axis lying close to but different from the optical axis of bilayer phosphorene. Our ab initio calculations reveal that the {Gamma}-point direct bandgap and the rectangular lattice of phosphorene, unlike the K-point bandgap of hexagonal lattice in graphene and TMDC, give rise to the remarkably strong moire physics in large-twist-angle phosphorene heterostructures. Our results highlight the exciting opportunities to explore moire physics in phosphorene and other van der Waals heterostructures with different lattice configurations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا