Do you want to publish a course? Click here

A law of robustness for two-layers neural networks

94   0   0.0 ( 0 )
 Added by Sebastien Bubeck
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We initiate the study of the inherent tradeoffs between the size of a neural network and its robustness, as measured by its Lipschitz constant. We make a precise conjecture that, for any Lipschitz activation function and for most datasets, any two-layers neural network with $k$ neurons that perfectly fit the data must have its Lipschitz constant larger (up to a constant) than $sqrt{n/k}$ where $n$ is the number of datapoints. In particular, this conjecture implies that overparametrization is necessary for robustness, since it means that one needs roughly one neuron per datapoint to ensure a $O(1)$-Lipschitz network, while mere data fitting of $d$-dimensional data requires only one neuron per $d$ datapoints. We prove a weaker version of this conjecture when the Lipschitz constant is replaced by an upper bound on it based on the spectral norm of the weight matrix. We also prove the conjecture in the high-dimensional regime $n approx d$ (which we also refer to as the undercomplete case, since only $k leq d$ is relevant here). Finally we prove the conjecture for polynomial activation functions of degree $p$ when $n approx d^p$. We complement these findings with experimental evidence supporting the conjecture.



rate research

Read More

Classically, data interpolation with a parametrized model class is possible as long as the number of parameters is larger than the number of equations to be satisfied. A puzzling phenomenon in deep learning is that models are trained with many more parameters than what this classical theory would suggest. We propose a theoretical explanation for this phenomenon. We prove that for a broad class of data distributions and model classes, overparametrization is necessary if one wants to interpolate the data smoothly. Namely we show that smooth interpolation requires $d$ times more parameters than mere interpolation, where $d$ is the ambient data dimension. We prove this universal law of robustness for any smoothly parametrized function class with polynomial size weights, and any covariate distribution verifying isoperimetry. In the case of two-layers neural networks and Gaussian covariates, this law was conjectured in prior work by Bubeck, Li and Nagaraj. We also give an interpretation of our result as an improved generalization bound for model classes consisting of smooth functions.
Vulnerability to adversarial attacks is one of the principal hurdles to the adoption of deep learning in safety-critical applications. Despite significant efforts, both practical and theoretical, the problem remains open. In this paper, we analyse the geometry of adversarial attacks in the large-data, overparametrized limit for Bayesian Neural Networks (BNNs). We show that, in the limit, vulnerability to gradient-based attacks arises as a result of degeneracy in the data distribution, i.e., when the data lies on a lower-dimensional submanifold of the ambient space. As a direct consequence, we demonstrate that in the limit BNN posteriors are robust to gradient-based adversarial attacks. Experimental results on the MNIST and Fashion MNIST datasets with BNNs trained with Hamiltonian Monte Carlo and Variational Inference support this line of argument, showing that BNNs can display both high accuracy and robustness to gradient based adversarial attacks.
Existing generalization measures that aim to capture a models simplicity based on parameter counts or norms fail to explain generalization in overparameterized deep neural networks. In this paper, we introduce a new, theoretically motivated measure of a networks simplicity which we call prunability: the smallest emph{fraction} of the networks parameters that can be kept while pruning without adversely affecting its training loss. We show that this measure is highly predictive of a models generalization performance across a large set of convolutional networks trained on CIFAR-10, does not grow with network size unlike existing pruning-based measures, and exhibits high correlation with test set loss even in a particularly challenging double descent setting. Lastly, we show that the success of prunability cannot be explained by its relation to known complexity measures based on models margin, flatness of minima and optimization speed, finding that our new measure is similar to -- but more predictive than -- existing flatness-based measures, and that its predictions exhibit low mutual information with those of other baselines.
163 - Lina Wang , Rui Tang , Yawei Yue 2020
The vulnerability of deep neural networks (DNNs) to adversarial attack, which is an attack that can mislead state-of-the-art classifiers into making an incorrect classification with high confidence by deliberately perturbing the original inputs, raises concerns about the robustness of DNNs to such attacks. Adversarial training, which is the main heuristic method for improving adversarial robustness and the first line of defense against adversarial attacks, requires many sample-by-sample calculations to increase training size and is usually insufficiently strong for an entire network. This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class. From this perspective, we propose a method to generate a single but image-agnostic adversarial perturbation that carries the semantic information implying the directions to the fragile parts on the decision boundary and causes inputs to be misclassified as a specified target. We call the adversarial training based on such perturbations region adversarial training (RAT), which resembles classical adversarial training but is distinguished in that it reinforces the semantic information missing in the relevant regions. Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data; moreover, it can defend against FGSM adversarial attacks that have a completely different pattern from the model seen during retraining.
Graph neural networks (GNNs) have received massive attention in the field of machine learning on graphs. Inspired by the success of neural networks, a line of research has been conducted to train GNNs to deal with various tasks, such as node classification, graph classification, and link prediction. In this work, our task of interest is graph classification. Several GNN models have been proposed and shown great accuracy in this task. However, the question is whether usual training methods fully realize the capacity of the GNN models. In this work, we propose a two-stage training framework based on triplet loss. In the first stage, GNN is trained to map each graph to a Euclidean-space vector so that graphs of the same class are close while those of different classes are mapped far apart. Once graphs are well-separated based on labels, a classifier is trained to distinguish between different classes. This method is generic in the sense that it is compatible with any GNN model. By adapting five GNN models to our method, we demonstrate the consistent improvement in accuracy and utilization of each GNNs allocated capacity over the original training method of each model up to 5.4% points in 12 datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا