Do you want to publish a course? Click here

Improving adversarial robustness of deep neural networks by using semantic information

164   0   0.0 ( 0 )
 Added by Lina Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The vulnerability of deep neural networks (DNNs) to adversarial attack, which is an attack that can mislead state-of-the-art classifiers into making an incorrect classification with high confidence by deliberately perturbing the original inputs, raises concerns about the robustness of DNNs to such attacks. Adversarial training, which is the main heuristic method for improving adversarial robustness and the first line of defense against adversarial attacks, requires many sample-by-sample calculations to increase training size and is usually insufficiently strong for an entire network. This paper provides a new perspective on the issue of adversarial robustness, one that shifts the focus from the network as a whole to the critical part of the region close to the decision boundary corresponding to a given class. From this perspective, we propose a method to generate a single but image-agnostic adversarial perturbation that carries the semantic information implying the directions to the fragile parts on the decision boundary and causes inputs to be misclassified as a specified target. We call the adversarial training based on such perturbations region adversarial training (RAT), which resembles classical adversarial training but is distinguished in that it reinforces the semantic information missing in the relevant regions. Experimental results on the MNIST and CIFAR-10 datasets show that this approach greatly improves adversarial robustness even using a very small dataset from the training data; moreover, it can defend against FGSM adversarial attacks that have a completely different pattern from the model seen during retraining.



rate research

Read More

96 - Yinpeng Dong , Hang Su , Jun Zhu 2017
Interpretability of deep neural networks (DNNs) is essential since it enables users to understand the overall strengths and weaknesses of the models, conveys an understanding of how the models will behave in the future, and how to diagnose and correct potential problems. However, it is challenging to reason about what a DNN actually does due to its opaque or black-box nature. To address this issue, we propose a novel technique to improve the interpretability of DNNs by leveraging the rich semantic information embedded in human descriptions. By concentrating on the video captioning task, we first extract a set of semantically meaningful topics from the human descriptions that cover a wide range of visual concepts, and integrate them into the model with an interpretive loss. We then propose a prediction difference maximization algorithm to interpret the learned features of each neuron. Experimental results demonstrate its effectiveness in video captioning using the interpretable features, which can also be transferred to video action recognition. By clearly understanding the learned features, users can easily revise false predictions via a human-in-the-loop procedure.
We focus on the use of proxy distributions, i.e., approximations of the underlying distribution of the training dataset, in both understanding and improving the adversarial robustness in image classification. While additional training data helps in adversarial training, curating a very large number of real-world images is challenging. In contrast, proxy distributions enable us to sample a potentially unlimited number of images and improve adversarial robustness using these samples. We first ask the question: when does adversarial robustness benefit from incorporating additional samples from the proxy distribution in the training stage? We prove that the difference between the robustness of a classifier on the proxy and original training dataset distribution is upper bounded by the conditional Wasserstein distance between them. Our result confirms the intuition that samples from a proxy distribution that closely approximates training dataset distribution should be able to boost adversarial robustness. Motivated by this finding, we leverage samples from state-of-the-art generative models, which can closely approximate training data distribution, to improve robustness. In particular, we improve robust accuracy by up to 6.1% and 5.7% in $l_{infty}$ and $l_2$ threat model, and certified robust accuracy by 6.7% over baselines not using proxy distributions on the CIFAR-10 dataset. Since we can sample an unlimited number of images from a proxy distribution, it also allows us to investigate the effect of an increasing number of training samples on adversarial robustness. Here we provide the first large scale empirical investigation of accuracy vs robustness trade-off and sample complexity of adversarial training by training deep neural networks on 2K to 10M images.
314 - Tianyu Pang , Kun Xu , Chao Du 2019
Though deep neural networks have achieved significant progress on various tasks, often enhanced by model ensemble, existing high-performance models can be vulnerable to adversarial attacks. Many efforts have been devoted to enhancing the robustness of individual networks and then constructing a straightforward ensemble, e.g., by directly averaging the outputs, which ignores the interaction among networks. This paper presents a new method that explores the interaction among individual networks to improve robustness for ensemble models. Technically, we define a new notion of ensemble diversity in the adversarial setting as the diversity among non-maximal predictions of individual members, and present an adaptive diversity promoting (ADP) regularizer to encourage the diversity, which leads to globally better robustness for the ensemble by making adversarial examples difficult to transfer among individual members. Our method is computationally efficient and compatible with the defense methods acting on individual networks. Empirical results on various datasets verify that our method can improve adversarial robustness while maintaining state-of-the-art accuracy on normal examples.
221 - Tao Bai , Jinqi Luo , Jun Zhao 2020
Adversarial examples are inevitable on the road of pervasive applications of deep neural networks (DNN). Imperceptible perturbations applied on natural samples can lead DNN-based classifiers to output wrong prediction with fair confidence score. It is increasingly important to obtain models with high robustness that are resistant to adversarial examples. In this paper, we survey recent advances in how to understand such intriguing property, i.e. adversarial robustness, from different perspectives. We give preliminary definitions on what adversarial attacks and robustness are. After that, we study frequently-used benchmarks and mention theoretically-proved bounds for adversarial robustness. We then provide an overview on analyzing correlations among adversarial robustness and other critical indicators of DNN models. Lastly, we introduce recent arguments on potential costs of adversarial training which have attracted wide attention from the research community.
We study the flow of information and the evolution of internal representations during deep neural network (DNN) training, aiming to demystify the compression aspect of the information bottleneck theory. The theory suggests that DNN training comprises a rapid fitting phase followed by a slower compression phase, in which the mutual information $I(X;T)$ between the input $X$ and internal representations $T$ decreases. Several papers observe compression of estimated mutual information on different DNN models, but the true $I(X;T)$ over these networks is provably either constant (discrete $X$) or infinite (continuous $X$). This work explains the discrepancy between theory and experiments, and clarifies what was actually measured by these past works. To this end, we introduce an auxiliary (noisy) DNN framework for which $I(X;T)$ is a meaningful quantity that depends on the networks parameters. This noisy framework is shown to be a good proxy for the original (deterministic) DNN both in terms of performance and the learned representations. We then develop a rigorous estimator for $I(X;T)$ in noisy DNNs and observe compression in various models. By relating $I(X;T)$ in the noisy DNN to an information-theoretic communication problem, we show that compression is driven by the progressive clustering of hidden representations of inputs from the same class. Several methods to directly monitor clustering of hidden representations, both in noisy and deterministic DNNs, are used to show that meaningful clusters form in the $T$ space. Finally, we return to the estimator of $I(X;T)$ employed in past works, and demonstrate that while it fails to capture the true (vacuous) mutual information, it does serve as a measure for clustering. This clarifies the past observations of compression and isolates the geometric clustering of hidden representations as the true phenomenon of interest.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا