Do you want to publish a course? Click here

Relativistic Impulse Approximation in the Atomic Ionization Process induced by Millicharged Particles

95   0   0.0 ( 0 )
 Added by Chen-Kai Qiao
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The millicharged particle has become an attractive topic to probe physics beyond the Standard Model. In direct detection experiments, the parameter space of millicharged particles can be constrained from the atomic ionization process. In this work, we develop the relativistic impulse approximation (RIA) approach, which can duel with atomic many-body effects effectively, in the atomic ionization process induced by millicharged particles. The formulation of RIA in the atomic ionization induced by millicharged particles is derived, and the numerical calculations are obtained and compared with those from free electron approximation and equivalent photon approximation. Concretely, the atomic ionizations induced by mllicharged dark matter particles and millicharged neutrinos in high-purity germanium (HPGe) and liquid xenon (LXe) detectors are carefully studied in this work. The differential cross sections, reaction event rates in HPGe and LXe detectors, and detecting sensitivities on dark matter particle and neutrino millicharge in next-generation HPGe and LXe based experiments are estimated and calculated to give a comprehensive study. Our results suggested that the next-generation experiments would improve 2-3 orders of magnitude on dark matter particle millicharge $delta_{chi}$ than the current best experimental bounds in direct detection experiments. Furthermore, the next-generation experiments would also improve 2-3 times on neutrino millicharge $delta_{ u}$ than the current experimental bounds.



rate research

Read More

Relativistic impulse approximation (RIA) has been widely used in atomic, condensed matter, nuclear, and elementary particle physics. In former treatments of RIA formulation, differential cross sections for Compton scattering processes were factorized into atomic Compton profiles by performing further simplified approximations in the integration. In this study, we develop an ``exact numerical method without using any further simplified approximations or factorization treatments. The validity of the approximations and factorizations used in former RIA treatments can be tested using our approach. Calculations for C, Cu, Ge, and Xe atomic systems are carried out using Dirac-Fock wavefunctions, and comparisons between the proposed approach and former treatments of RIA are performed and discussed in detail. Numerical results indicate that these simplified approximations work reasonably in the Compton peak region, and our results have little difference with the best of the former RIA treatments in the entire energy region. While in regions far from the Compton peak, the RIA results become inaccurate, even when our ``exact numerical treatment is used.
Neutrino-nucleus quasielastic scattering is studied in the plane wave impulse approximation for three nuclear models: the relativistic Fermi gas (RFG), the independent-particle shell model (IPSM) and the natural orbitals (NO) model with Lorentzian dependence of the excitation energy. A complete study of the kinematics of the semi-inclusive process and the associated cross sections are presented and discussed for 40 Ar and 12 C. Inclusive cross sections are also obtained by integrating the semi-inclusive expressions over the outgoing hadron. Results are consistent with previous studies restricted to the inclusive channel. In particular, a comparison with the analytical results for the RFG model is performed. Explicit expressions for the hadronic tensor and the 10 semi-inclusive nuclear responses are given. Theoretical predictions are compared with semi-inclusive experimental data from T2K experiment.
We calculate the production of hypothetical millicharged particles (MCPs) of sub-GeV masses by the J-PARC proton beam in the framework of T2K and future T2HK neutrino oscillation experiments. Concentrating on the region of model parameter space, where an MCP can hit the near neutrino detector twice, we adopt this background-free signature to estimate the sensitivity of T2K and T2HK experiments to MCPs. We find that a previously inaccessible in direct searches region of charges 5$times$$10^{-4}$-$10^{-2}$ $e$ for MCP masses 0.1-0.5 GeV can be probed.
102 - K. Urbanowski 2014
We study the survival probability of moving relativistic unstable particles with definite momentum $vec{p} eq 0$. The amplitude of the survival probability of these particles is calculated using its integral representation. We found decay curves of such particles for the quantum mechanical models considered. These model studies show that late time deviations of the survival probability of these particles from the exponential form of the decay law, that is the transition times region between exponential and non-expo-nen-tial form of the survival probability, should occur much earlier than it follows from the classical standard approach resolving itself into replacing time $t$ by $t/gamma$ (where $gamma$ is the relativistic Lorentz factor) in the formula for the survival probability and that the survival probabilities should tend to zero as $trightarrow infty$ much slower than one would expect using classical time dilation relation. Here we show also that for some physically admissible models of unstable states the computed decay curves of the moving particles have fluctuating form at relatively short times including times of order of the lifetime.
94 - J.A. Caballero 2005
Superscaling of the quasielastic cross section in charged current neutrino-nucleus reactions at energies of a few GeV is investigated within the framework of the relativistic impulse approximation. Several approaches are used to describe final state interactions and comparisons are made with the plane wave approximation. Superscaling is very successful in all cases. The scaling function obtained using a relativistic mean field for the final states shows an asymmetric shape with a long tail extending towards positive values of the scaling variable, in excellent agreement with the behavior presented by the experimental scaling function.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا