Do you want to publish a course? Click here

Multi-View Consistency Loss for Improved Single-Image 3D Reconstruction of Clothed People

214   0   0.0 ( 0 )
 Added by Akin Caliskan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We present a novel method to improve the accuracy of the 3D reconstruction of clothed human shape from a single image. Recent work has introduced volumetric, implicit and model-based shape learning frameworks for reconstruction of objects and people from one or more images. However, the accuracy and completeness for reconstruction of clothed people is limited due to the large variation in shape resulting from clothing, hair, body size, pose and camera viewpoint. This paper introduces two advances to overcome this limitation: firstly a new synthetic dataset of realistic clothed people, 3DVH; and secondly, a novel multiple-view loss function for training of monocular volumetric shape estimation, which is demonstrated to significantly improve generalisation and reconstruction accuracy. The 3DVH dataset of realistic clothed 3D human models rendered with diverse natural backgrounds is demonstrated to allows transfer to reconstruction from real images of people. Comprehensive comparative performance evaluation on both synthetic and real images of people demonstrates that the proposed method significantly outperforms the previous state-of-the-art learning-based single image 3D human shape estimation approaches achieving significant improvement of reconstruction accuracy, completeness, and quality. An ablation study shows that this is due to both the proposed multiple-view training and the new 3DVH dataset. The code and the dataset can be found at the project website: https://akincaliskan3d.github.io/MV3DH/.



rate research

Read More

We learn a self-supervised, single-view 3D reconstruction model that predicts the 3D mesh shape, texture and camera pose of a target object with a collection of 2D images and silhouettes. The proposed method does not necessitate 3D supervision, manually annotated keypoints, multi-view images of an object or a prior 3D template. The key insight of our work is that objects can be represented as a collection of deformable parts, and each part is semantically coherent across different instances of the same category (e.g., wings on birds and wheels on cars). Therefore, by leveraging self-supervisedly learned part segmentation of a large collection of category-specific images, we can effectively enforce semantic consistency between the reconstructed meshes and the original images. This significantly reduces ambiguities during joint prediction of shape and camera pose of an object, along with texture. To the best of our knowledge, we are the first to try and solve the single-view reconstruction problem without a category-specific template mesh or semantic keypoints. Thus our model can easily generalize to various object categories without such labels, e.g., horses, penguins, etc. Through a variety of experiments on several categories of deformable and rigid objects, we demonstrate that our unsupervised method performs comparably if not better than existing category-specific reconstruction methods learned with supervision.
112 - Jinglu Wang , Bo Sun , Yan Lu 2018
In this paper, we address the problem of reconstructing an objects surface from a single image using generative networks. First, we represent a 3D surface with an aggregation of dense point clouds from multiple views. Each point cloud is embedded in a regular 2D grid aligned on an image plane of a viewpoint, making the point cloud convolution-favored and ordered so as to fit into deep network architectures. The point clouds can be easily triangulated by exploiting connectivities of the 2D grids to form mesh-based surfaces. Second, we propose an encoder-decoder network that generates such kind of multiple view-dependent point clouds from a single image by regressing their 3D coordinates and visibilities. We also introduce a novel geometric loss that is able to interpret discrepancy over 3D surfaces as opposed to 2D projective planes, resorting to the surface discretization on the constructed meshes. We demonstrate that the multi-view point regression network outperforms state-of-the-art methods with a significant improvement on challenging datasets.
We present a novel method to learn temporally consistent 3D reconstruction of clothed people from a monocular video. Recent methods for 3D human reconstruction from monocular video using volumetric, implicit or parametric human shape models, produce per frame reconstructions giving temporally inconsistent output and limited performance when applied to video. In this paper, we introduce an approach to learn temporally consistent features for textured reconstruction of clothed 3D human sequences from monocular video by proposing two advances: a novel temporal consistency loss function; and hybrid representation learning for implicit 3D reconstruction from 2D images and coarse 3D geometry. The proposed advances improve the temporal consistency and accuracy of both the 3D reconstruction and texture prediction from a monocular video. Comprehensive comparative performance evaluation on images of people demonstrates that the proposed method significantly outperforms the state-of-the-art learning-based single image 3D human shape estimation approaches achieving significant improvement of reconstruction accuracy, completeness, quality and temporal consistency.
Recent learning-based approaches, in which models are trained by single-view images have shown promising results for monocular 3D face reconstruction, but they suffer from the ill-posed face pose and depth ambiguity issue. In contrast to previous works that only enforce 2D feature constraints, we propose a self-supervised training architecture by leveraging the multi-view geometry consistency, which provides reliable constraints on face pose and depth estimation. We first propose an occlusion-aware view synthesis method to apply multi-view geometry consistency to self-supervised learning. Then we design three novel loss functions for multi-view consistency, including the pixel consistency loss, the depth consistency loss, and the facial landmark-based epipolar loss. Our method is accurate and robust, especially under large variations of expressions, poses, and illumination conditions. Comprehensive experiments on the face alignment and 3D face reconstruction benchmarks have demonstrated superiority over state-of-the-art methods. Our code and model are released in https://github.com/jiaxiangshang/MGCNet.
406 - Dan Wang , Xinrui Cui , Xun Chen 2021
Deep CNN-based methods have so far achieved the state of the art results in multi-view 3D object reconstruction. Despite the considerable progress, the two core modules of these methods - multi-view feature extraction and fusion, are usually investigated separately, and the object relations in different views are rarely explored. In this paper, inspired by the recent great success in self-attention-based Transformer models, we reformulate the multi-view 3D reconstruction as a sequence-to-sequence prediction problem and propose a new framework named 3D Volume Transformer (VolT) for such a task. Unlike previous CNN-based methods using a separate design, we unify the feature extraction and view fusion in a single Transformer network. A natural advantage of our design lies in the exploration of view-to-view relationships using self-attention among multiple unordered inputs. On ShapeNet - a large-scale 3D reconstruction benchmark dataset, our method achieves a new state-of-the-art accuracy in multi-view reconstruction with fewer parameters ($70%$ less) than other CNN-based methods. Experimental results also suggest the strong scaling capability of our method. Our code will be made publicly available.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا