Do you want to publish a course? Click here

Gamma Ray Bursts: Not so Much Deadlier than We Thought

291   0   0.0 ( 0 )
 Added by Brian Thomas
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the additional effect on planetary atmospheres of recently detected gamma-ray burst afterglow photons in the range up to 1 TeV. For an Earth-like atmosphere we find that there is a small additional depletion in ozone versus that modeled for only prompt emission. We also find a small enhancement of muon flux at the planet surface. Overall, we conclude that the additional afterglow emission, even with TeV photons, does not result in a significantly larger impact over that found in past studies.



rate research

Read More

For 32 central stars of PNe we present their parameters interpolated among the new evolutionary sequences. The derived stellar final masses are confined between 0.53 and 0.58 $M_odot$ in good agreement with the peak in the white dwarf mass distribution. Consequently, the inferred star formation history of the Galactic bulge is well restricted between 3 and 11 Gyr and is compatible with other published studies. The new evolutionary tracks proved a very good as a tool for analysis of late stages of stars life. The result provide a compelling confirmation of the accelerated post-AGB evolution.
129 - Michael S. Turner 2021
The $rmLambda$CDM cosmological model is remarkable: with just 6 parameters it describes the evolution of the Universe from a very early time when all structures were quantum fluctuations on subatomic scales to the present, and it is consistent with a wealth of high-precision data, both laboratory measurements and astronomical observations. However, the foundation of $rmLambda$CDM involves physics beyond the standard model of particle physics: particle dark matter, dark energy and cosmic inflation. Until this `new physics is clarified, $rmLambda$CDM is at best incomplete and at worst a phenomenological construct that accommodates the data. I discuss the path forward, which involves both discovery and disruption, some grand challenges and finally the limits of scientific cosmology.
We report the discovery of two new giant radio galaxies (GRGs) using the MeerKAT International GHz Tiered Extragalactic Exploration (MIGHTEE) survey. Both GRGs were found within a 1 deg^2 region inside the COSMOS field. They have redshifts of z=0.1656 and z=0.3363 and physical sizes of 2.4Mpc and 2.0Mpc, respectively. Only the cores of these GRGs were clearly visible in previous high resolution VLA observations, since the diffuse emission of the lobes was resolved out. However, the excellent sensitivity and uv coverage of the new MeerKAT telescope allowed this diffuse emission to be detected. The GRGs occupy a unpopulated region of radio power - size parameter space. Based on a recent estimate of the GRG number density, the probability of finding two or more GRGs with such large sizes at z<0.4 in a ~1deg^2 field is only 2.7x10^-6, assuming Poisson statistics. This supports the hypothesis that the prevalence of GRGs has been significantly underestimated in the past due to limited sensitivity to low surface brightness emission. The two GRGs presented here may be the first of a new population to be revealed through surveys like MIGHTEE which provide exquisite sensitivity to diffuse, extended emission.
The aim of the present work is to study the potential short-term atmospheric and biospheric influence of Gamma Ray Bursts on the Earth. We focus in the ultraviolet flash at the planets surface, which occurs as a result of the retransmission of the $gamma$ radiation through the atmosphere. This would be the only important short-term effect on life. We mostly consider Archean and Proterozoic eons, and for completeness we also comment on the Phanerozoic. Therefore, in our study we consider atmospheres with oxygen levels ranging from $10^{-5}$ to 1% of the present atmospheric level, representing different moments in the oxygen rise history. Ecological consequences and some strategies to estimate their importance are outlined.
120 - B. Gendre 2019
Ultra-long Gamma-Ray Bursts are a class of high energy transients lasting several hours. Their exact nature is still elusive, and several models have been proposed to explain them. Because of the limited coverage of wide field gamma-ray detectors, the study of their prompt phase with sensitive narrow-field X-ray instruments could help in understanding the origin of ultra-long GRBs. However, the observers face a true problem in rapidly activating follow-up observations, due to the challenging identification of an ultra-long GRB before the end of the prompt phase. We present here a comparison of the prompt properties available after a few tens of minutes of a sample of ultra-long GRBs and normal long GRBs, looking for prior indicators of the long duration. We find that there is no such clear prior indicator of the duration of the burst. We also found that statistically, a burst lasting at least 10 and 20 minutes has respectively 28% and 50% probability to be an ultralong event. These findings point towards a common central engine for normal long and ultra-long GRBs, with the collapsar model privileged.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا