Do you want to publish a course? Click here

On the vanishing orbital X-ray variability of the eclipsing binary millisecond pulsar 47 Tuc W

86   0   0.0 ( 0 )
 Added by Pavan R. Hebbar
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Redback millisecond pulsars (MSPs) typically show pronounced orbital variability in their X-ray emission due to our changing view of the intrabinary shock (IBS) between the pulsar wind and stellar wind from the companion. Some redbacks (transitional MSPs) have shown dramatic changes in their multiwavelength properties, indicating a transition from a radio pulsar state to an accretion-powered state. The redback MSP 47 Tuc W showed clear X-ray orbital variability in the Chandra ACIS-S observations in 2002, which were not detectable in the longer Chandra HRC-S observations in 2005-06, suggesting that it might have undergone a state transition. However, the Chandra observations of 47 Tuc in 2014-15 show similar X-ray orbital variability as in 2002. We explain the different X-ray light-curves from these epochs in terms of two components of the X-ray spectrum (soft X-rays from the pulsar, vs. harder X-rays from the IBS), and different sensitivities of the X-ray instruments observing in each epoch. However, when we use our best-fit spectra with HRC response files to model the HRC light-curve, we expect a more significant and shorter dip than that observed in the 2005-06 Chandra data. This suggests an intrinsic change in the IBS of the system. We use the ICARUS stellar modelling software, including calculations of heating by an IBS, to model the X-ray, optical, and UV light-curves of 47 Tuc W. Our best-fitting parameters point towards a high-inclination system (i~60 deg), which is primarily heated by the pulsar radiation, with an IBS dominated by the companion wind momentum.



rate research

Read More

IGR J16493-4348 is an eclipsing supergiant high-mass X-ray binary (sgHMXB), where accretion onto the compact object occurs via the radially outflowing stellar wind of its early B-type companion. We present an analysis of the systems X-ray variability and periodic modulation using pointed observations (2.5-25 keV) and Galactic bulge scans (2-10 keV) from the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA), along with Swift Burst Alert Telescope (BAT) 70-month snapshot (14-195 keV) and transient monitor (15-50 keV) observations. The orbital eclipse profiles in the PCA bulge scans and BAT light curves are modeled using asymmetric and symmetric step and ramp functions. We obtain an improved orbital period measurement of 6.7828 $pm$ 0.0004 days from an observed minus calculated (O-C) analysis of mid-eclipse times derived from the BAT transient monitor and PCA scan data. No evidence is found for the presence of a strong photoionization or accretion wake. We refine the superorbital period to 20.067 $pm$ 0.009 days from the discrete Fourier transform (DFT) of the BAT transient monitor light curve. A pulse period of 1093.1036 $pm$ 0.0004 s is measured from a pulsar timing analysis using pointed PCA observations spanning $sim$1.4 binary orbits. We present pulse times of arrival (ToAs), circular and eccentric timing models, and calculations of the systems Keplerian binary orbital parameters. We derive an X-ray mass function of $f_{x}(M)$ $=$ 13.2$^{+2.4}_{-2.5}$ $M_{odot}$ and find a spectral type of B0.5 Ia for the supergiant companion through constraints on the mass and radius of the donor. Measurements of the eclipse half-angle and additional parameters describing the system geometry are provided.
To confirm the nature of the donor star in the ultra-compact X-ray binary candidate 47 Tuc X9, we obtained optical spectra (3,000$-$10,000 {AA}) with the Hubble Space Telescope / Space Telescope Imaging Spectrograph. We find no strong emission or absorption features in the spectrum of X9. In particular, we place $3sigma$ upper limits on the H$alpha$ and HeII $lambda 4686$ emission line equivalent widths $-$EW$_{mathrm{Halpha}} lesssim 14$ {AA} and $-$EW$_{mathrm{HeII}} lesssim 9$ {AA}, respectively. This is much lower than seen for typical X-ray binaries at a similar X-ray luminosity (which, for $L_{mathrm{2-10 keV}} approx 10^{33}-10^{34}$ erg s$^{-1}$ is typically $-$EW$_{mathrm{Halpha}} sim 50$ {AA}). This supports our previous suggestion (by Bahramian et al.) of an H-poor donor in X9. We perform timing analysis on archival far-ultraviolet, $V$ and $I$-band data to search for periodicities. In the optical bands we recover the seven-day superorbital period initially discovered in X-rays, but we do not recover the orbital period. In the far-ultraviolet we find evidence for a 27.2 min period (shorter than the 28.2 min period seen in X-rays). We find that either a neutron star or black hole could explain the observed properties of X9. We also perform binary evolution calculations, showing that the formation of an initial black hole / He-star binary early in the life of a globular cluster could evolve into a present-day system such as X9 (should the compact object in this system indeed be a black hole) via mass-transfer driven by gravitational wave radiation.
417 - C. Y. Hui , Qin Han (2 2018
We report a detailed analysis of the orbital properties of binary millisecond pulsar (MSP) with a white dwarf (WD) companion. Positive correlations between the orbital period $P_{rm b}$ and eccentricity $epsilon$ are found in two classes of MSP binaries with a He WD and with a CO/ONeMg WD, though their trends are different. The distribution of $P_{rm b}$ is not uniform. Deficiency of sources at $P_{rm b}sim35-50$~days (Gap 1) have been mentioned in previous studies. On the other hand, another gap at $P_{rm b}sim2.5-4.5$~days (Gap 2) is identified for the first time. Inspection of the relation between $P_{rm b}$ and the companion masses $M_{rm c}$ revealed the subpopulations of MSP binaries with a He WD separated by Gap 1, above which $P_{rm b}$ is independent of $M_{rm c}$ (horizontal branch) but below which $P_{rm b}$ correlates strongly with $M_{rm c}$ (lower branch). Distinctive horizontal branch and lower branch separated by Gap 2 were identified for the MSP binaries with a CO/ONeMg WD at shorter $P_{rm b}$ and higher $M_{rm c}$. Generally, $M_{rm c}$ are higher in the horizontal branch than in the lower branch for the MSP binaries with a He WD. These properties can be explained in terms of a binary orbital evolution scenario in which the WD companion was ablated by a pulsar wind in the post mass-transfer phase.
We present X-ray observations of the redback eclipsing radio millisecond pulsar and candidate radio pulsar/X-ray binary transition object PSR J1723-2837. The X-ray emission from the system is predominantly non-thermal and exhibits pronounced variability as a function of orbital phase, with a factor of ~2 reduction in brightness around superior conjunction. Such temporal behavior appears to be a defining characteristic of this variety of peculiar millisecond pulsar binaries and is likely caused by a partial geometric occultation by the main-sequence-like companion of a shock within the binary. There is no indication of diffuse X-ray emission from a bow shock or pulsar wind nebula associated with the pulsar. We also report on a search for point source emission and $gamma$-ray pulsations in Fermi Large Area Telescope data using a likelihood analysis and photon probability weighting. Although PSR J1723-2837 is consistent with being a $gamma$-ray point source, due to the strong Galactic diffuse emission at its position a definitive association cannot be established. No statistically significant pulsations or modulation at the orbital period are detected. For a presumed source detection, the implied $gamma$-ray luminosity is $lesssim$5% of its spin-down power. This indicates that PSR J1723-2837 is either one of the least efficient $gamma$-ray producing millisecond pulsars or, if the detection is spurious, the $gamma$-ray emission pattern is not directed towards us.
We report on the discovery and the timing analysis of the first eclipsing accretion-powered millisecond X-ray pulsar (AMXP): SWIFT J1749.4-2807. The neutron star rotates at a frequency of ~517.9 Hz and is in a binary system with an orbital period of 8.8 hrs and a projected semi-major axis of ~1.90 lt-s. Assuming a neutron star between 0.8 and 2.2 M_o and using the mass function of the system and the eclipse half-angle, we constrain the mass of the companion and the inclination of the system to be in the ~0.46-0.81 M_o and $sim74.4^o-77.3^o range, respectively. To date, this is the tightest constraint on the orbital inclination of any AMXP. As in other AMXPs, the pulse profile shows harmonic content up to the 3rd overtone. However, this is the first AMXP to show a 1st overtone with rms amplitudes between ~6% and ~23%, which is the strongest ever seen, and which can be more than two times stronger than the fundamental. The fact that SWIFT J1749.4-2807 is an eclipsing system which shows uncommonly strong harmonic content suggests that it might be the best source to date to set constraints on neutron star properties including compactness and geometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا