Do you want to publish a course? Click here

On the orbital properties of millisecond pulsar binaries

418   0   0.0 ( 0 )
 Added by Chung Yue Hui David
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a detailed analysis of the orbital properties of binary millisecond pulsar (MSP) with a white dwarf (WD) companion. Positive correlations between the orbital period $P_{rm b}$ and eccentricity $epsilon$ are found in two classes of MSP binaries with a He WD and with a CO/ONeMg WD, though their trends are different. The distribution of $P_{rm b}$ is not uniform. Deficiency of sources at $P_{rm b}sim35-50$~days (Gap 1) have been mentioned in previous studies. On the other hand, another gap at $P_{rm b}sim2.5-4.5$~days (Gap 2) is identified for the first time. Inspection of the relation between $P_{rm b}$ and the companion masses $M_{rm c}$ revealed the subpopulations of MSP binaries with a He WD separated by Gap 1, above which $P_{rm b}$ is independent of $M_{rm c}$ (horizontal branch) but below which $P_{rm b}$ correlates strongly with $M_{rm c}$ (lower branch). Distinctive horizontal branch and lower branch separated by Gap 2 were identified for the MSP binaries with a CO/ONeMg WD at shorter $P_{rm b}$ and higher $M_{rm c}$. Generally, $M_{rm c}$ are higher in the horizontal branch than in the lower branch for the MSP binaries with a He WD. These properties can be explained in terms of a binary orbital evolution scenario in which the WD companion was ablated by a pulsar wind in the post mass-transfer phase.



rate research

Read More

We present the first optical spectroscopy of five confirmed (or strong candidate) redback millisecond pulsar binaries, obtaining complete radial velocity curves for each companion star. The properties of these millisecond pulsar binaries with low-mass, hydrogen-rich companions are discussed in the context of the 14 confirmed and 10 candidate field redbacks. We find that the neutron stars in redbacks have a median mass of 1.78 +/- 0.09 M_sun with a dispersion of sigma = 0.21 +/- 0.09. Neutron stars with masses in excess of 2 M_sun are consistent with, but not firmly demanded by, current observations. Redback companions have median masses of 0.36 +/- 0.04 M_sun with a scatter of sigma = 0.15 +/- 0.04, and a tail possibly extending up to 0.7-0.9 M_sun. Candidate redbacks tend to have higher companion masses than confirmed redbacks, suggesting a possible selection bias against the detection of radio pulsations in these more massive candidate systems. The distribution of companion masses between redbacks and the less massive black widows continues to be strongly bimodal, which is an important constraint on evolutionary models for these systems. Among redbacks, the median efficiency of converting the pulsar spindown energy to gamma-ray luminosity is ~10%.
Pulsar winds interacting with sources of external pressure are well-established as efficient and prolific TeV accelerators in our Galaxy. Yet, enabled by observations from Fermi-LAT, a growing class of non-accreting pulsars in binaries has emerged and these are likely to become apparent as TeV emitters in the CTA era. This class consists of the black widows and redbacks, binaries in which a millisecond pulsar interacts with its low-mass companion. In such systems, an intrabinary shock can form as a site of particle acceleration and associated nonthermal emission. We motivate why these sources are particularly interesting for understanding pulsar winds. We also describe our new multizone code which models the X-ray and gamma-ray synchrotron and inverse Compton spectral components for select spider binaries, including diffusion, convection, and radiative energy losses in an axially symmetric, steady-state approach. This new multizone code simultaneously yields energy-dependent light curves and orbital-phase-resolved spectra. It also better constrains the multiplicity of electron/positron pairs that have been accelerated up to TeV energies and are necessary to power orbitally-modulated synchrotron emission components between the X-rays and MeV/GeV bands potentially observed in some systems. This affords a more robust prediction of the expected high-energy and VHE gamma-ray flux. Nearby MSPs with hot or flaring companions may be promising targets for CTA, and it is possible that spider binaries could contribute to the observed AMS-02 energetic positron excess.
271 - A. Patruno 2016
The accreting millisecond pulsars IGR J00291+5934 and SAX J1808.4-3658 are two compact binaries with very similar orbital parameters. The latter has been observed to evolve on a very short timescale of ~70 Myr which is more than an order of magnitude shorter than expected. There is an ongoing debate on the possibility that the pulsar spin-down power ablates the companion generating large amount of mass-loss in the system. It is interesting therefore to study whether IGR J00291+5934 does show a similar behaviour as its twin system SAX J1808.4-3658. In this work we present the first measurement of the orbital period derivative of IGR J00291+5934. By using XMM-Newton data recorded during the 2015 outburst and adding the previous results of the 2004 and 2008 outbursts, we are able to measure a 90% confidence level upper limit for the orbital period derivative of -5x10^-13<Pb_dot<6x10^-13. This implies that the binary is evolving on a timescale longer than ~0.5 Gyr, which is compatible with the expected timescale of mass transfer driven by angular momentum loss via gravitational radiation. We discuss the scenario in which the power loss from magnetic dipole radiation of the neutron star is hitting the companion star. If this model is applied to SAX J1808.4-3658 then the difference in orbital behavior can be ascribed to a different efficiency for the conversion of the spin-down power into energetic relativistic pulsar wind and X-ray/gamma-ray radiation for the two pulsars, with IGR J00291+5934 requiring an extraordinarily low efficiency of less than 5% to explain the observations. Alternatively, the donor in IGR J00291+5934 is weakly/not magnetized which would suppress the possibility of generating mass-quadrupole variations.
Linares et al. (2016) obtained quasi-simultaneous g, r and i-band light curves and an absorption line radial velocity curve of the secondary star in the redback system 3FGL J0212.1+5320. The light curves showed two maxima and minima primarily due to the secondary stars ellipsoidal modulation, but with unequal maxima and minima. We fit these light curves and radial velocities with our X-ray binary model including either a dark solar-type star spot or a hot spot due to off-centre heating from an intrabinary shock, to account for the unequal maxima. Both models give a radial velocity semi-amplitude and rotational broadening that agree with the observations. The observed secondary stars effective temperature is best matched with the value obtained using the hot spot model, which gives a neutron star and secondary star mass of $M_{rm 1}$=1.85$^{+0.32}_{-0.26}$ $M_{odot}$and $M_{rm 2}$=0.50$^{+0.22}_{-0.19}$ $M_{odot}$, respectively.
Redback millisecond pulsars (MSPs) typically show pronounced orbital variability in their X-ray emission due to our changing view of the intrabinary shock (IBS) between the pulsar wind and stellar wind from the companion. Some redbacks (transitional MSPs) have shown dramatic changes in their multiwavelength properties, indicating a transition from a radio pulsar state to an accretion-powered state. The redback MSP 47 Tuc W showed clear X-ray orbital variability in the Chandra ACIS-S observations in 2002, which were not detectable in the longer Chandra HRC-S observations in 2005-06, suggesting that it might have undergone a state transition. However, the Chandra observations of 47 Tuc in 2014-15 show similar X-ray orbital variability as in 2002. We explain the different X-ray light-curves from these epochs in terms of two components of the X-ray spectrum (soft X-rays from the pulsar, vs. harder X-rays from the IBS), and different sensitivities of the X-ray instruments observing in each epoch. However, when we use our best-fit spectra with HRC response files to model the HRC light-curve, we expect a more significant and shorter dip than that observed in the 2005-06 Chandra data. This suggests an intrinsic change in the IBS of the system. We use the ICARUS stellar modelling software, including calculations of heating by an IBS, to model the X-ray, optical, and UV light-curves of 47 Tuc W. Our best-fitting parameters point towards a high-inclination system (i~60 deg), which is primarily heated by the pulsar radiation, with an IBS dominated by the companion wind momentum.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا