Do you want to publish a course? Click here

Cuid: A new study of perceived image quality and its subjective assessment

192   0   0.0 ( 0 )
 Added by Lucie Leveque
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Research on image quality assessment (IQA) remains limited mainly due to our incomplete knowledge about human visual perception. Existing IQA algorithms have been designed or trained with insufficient subjective data with a small degree of stimulus variability. This has led to challenges for those algorithms to handle complexity and diversity of real-world digital content. Perceptual evidence from human subjects serves as a grounding for the development of advanced IQA algorithms. It is thus critical to acquire reliable subjective data with controlled perception experiments that faithfully reflect human behavioural responses to distortions in visual signals. In this paper, we present a new study of image quality perception where subjective ratings were collected in a controlled lab environment. We investigate how quality perception is affected by a combination of different categories of images and different types and levels of distortions. The database will be made publicly available to facilitate calibration and validation of IQA algorithms.



rate research

Read More

Video quality assessment (VQA) is an important problem in computer vision. The videos in computer vision applications are usually captured in the wild. We focus on automatically assessing the quality of in-the-wild videos, which is a challenging problem due to the absence of reference videos, the complexity of distortions, and the diversity of video contents. Moreover, the video contents and distortions among existing datasets are quite different, which leads to poor performance of data-driven methods in the cross-dataset evaluation setting. To improve the performance of quality assessment models, we borrow intuitions from human perception, specifically, content dependency and temporal-memory effects of human visual system. To face the cross-dataset evaluation challenge, we explore a mixed datasets training strategy for training a single VQA model with multiple datasets. The proposed unified framework explicitly includes three stages: relative quality assessor, nonlinear mapping, and dataset-specific perceptual scale alignment, to jointly predict relative quality, perceptual quality, and subjective quality. Experiments are conducted on four publicly available datasets for VQA in the wild, i.e., LIVE-VQC, LIVE-Qualcomm, KoNViD-1k, and CVD2014. The experimental results verify the effectiveness of the mixed datasets training strategy and prove the superior performance of the unified model in comparison with the state-of-the-art models. For reproducible research, we make the PyTorch implementation of our method available at https://github.com/lidq92/MDTVSFA.
In subjective full-reference image quality assessment, differences between perceptual image qualities of the reference image and its distort
Deep learning methods for image quality assessment (IQA) are limited due to the small size of existing datasets. Extensive datasets require substantial resources both for generating publishable content and annotating it accurately. We present a systematic and scalable approach to creating KonIQ-10k, the largest IQA dataset to date, consisting of 10,073 quality scored images. It is the first in-the-wild database aiming for ecological validity, concerning the authenticity of distortions, the diversity of content, and quality-related indicators. Through the use of crowdsourcing, we obtained 1.2 million reliable quality ratings from 1,459 crowd workers, paving the way for more general IQA models. We propose a novel, deep learning model (KonCept512), to show an excellent generalization beyond the test set (0.921 SROCC), to the current state-of-the-art database LIVE-in-the-Wild (0.825 SROCC). The model derives its core performance from the InceptionResNet architecture, being trained at a higher resolution than previous models (512x384). Correlation analysis shows that KonCept512 performs similar to having 9 subjective scores for each test image.
Ensemble methods are generally regarded to be better than a single model if the base learners are deemed to be accurate and diverse. Here we investigate a semi-supervised ensemble learning strategy to produce generalizable blind image quality assessment models. We train a multi-head convolutional network for quality prediction by maximizing the accuracy of the ensemble (as well as the base learners) on labeled data, and the disagreement (i.e., diversity) among them on unlabeled data, both implemented by the fidelity loss. We conduct extensive experiments to demonstrate the advantages of employing unlabeled data for BIQA, especially in model generalization and failure identification.
Video and image quality assessment has long been projected as a regression problem, which requires predicting a continuous quality score given an input stimulus. However, recent efforts have shown that accurate quality score regression on real-world user-generated content (UGC) is a very challenging task. To make the problem more tractable, we propose two new methods - binary, and ordinal classification - as alternatives to evaluate and compare no-reference quality models at coarser levels. Moreover, the proposed new tasks convey more practical meaning on perceptually optimized UGC transcoding, or for preprocessing on media processing platforms. We conduct a comprehensive benchmark experiment of popular no-reference quality models on recent in-the-wild picture and video quality datasets, providing reliable baselines for both evaluation methods to support further studies. We hope this work promotes coarse-grained perceptual modeling and its applications to efficient UGC processing.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا