Do you want to publish a course? Click here

Dynamic Semantic Graph Construction and Reasoning for Explainable Multi-hop Science Question Answering

97   0   0.0 ( 0 )
 Added by Weiwen Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Knowledge retrieval and reasoning are two key stages in multi-hop question answering (QA) at web scale. Existing approaches suffer from low confidence when retrieving evidence facts to fill the knowledge gap and lack transparent reasoning process. In this paper, we propose a new framework to exploit more valid facts while obtaining explainability for multi-hop QA by dynamically constructing a semantic graph and reasoning over it. We employ Abstract Meaning Representation (AMR) as semantic graph representation. Our framework contains three new ideas: (a) {tt AMR-SG}, an AMR-based Semantic Graph, constructed by candidate fact AMRs to uncover any hop relations among question, answer and multiple facts. (b) A novel path-based fact analytics approach exploiting {tt AMR-SG} to extract active facts from a large fact pool to answer questions. (c) A fact-level relation modeling leveraging graph convolution network (GCN) to guide the reasoning process. Results on two scientific multi-hop QA datasets show that we can surpass recent approaches including those using additional knowledge graphs while maintaining high explainability on OpenBookQA and achieve a new state-of-the-art result on ARC-Challenge in a computationally practicable setting.



rate research

Read More

105 - Yuwei Fang , Siqi Sun , Zhe Gan 2019
In this paper, we present Hierarchical Graph Network (HGN) for multi-hop question answering. To aggregate clues from scattered texts across multiple paragraphs, a hierarchical graph is created by constructing nodes on different levels of granularity (questions, paragraphs, sentences, entities), the representations of which are initialized with pre-trained contextual encoders. Given this hierarchical graph, the initial node representations are updated through graph propagation, and multi-hop reasoning is performed via traversing through the graph edges for each subsequent sub-task (e.g., paragraph selection, supporting facts extraction, answer prediction). By weaving heterogeneous nodes into an integral unified graph, this hierarchical differentiation of node granularity enables HGN to support different question answering sub-tasks simultaneously. Experiments on the HotpotQA benchmark demonstrate that the proposed model achieves new state of the art, outperforming existing multi-hop QA approaches.
Existing work on augmenting question answering (QA) models with external knowledge (e.g., knowledge graphs) either struggle to model multi-hop relations efficiently, or lack transparency into the models prediction rationale. In this paper, we propose a novel knowledge-aware approach that equips pre-trained language models (PTLMs) with a multi-hop relational reasoning module, named multi-hop graph relation network (MHGRN). It performs multi-hop, multi-relational reasoning over subgraphs extracted from external knowledge graphs. The proposed reasoning module unifies path-based reasoning methods and graph neural networks to achieve better interpretability and scalability. We also empirically show its effectiveness and scalability on CommonsenseQA and OpenbookQA datasets, and interpret its behaviors with case studies.
166 - Yufei Feng , Mo Yu , Wenhan Xiong 2020
We propose the new problem of learning to recover reasoning chains from weakly supervised signals, i.e., the question-answer pairs. We propose a cooperative game approach to deal with this problem, in which how the evidence passages are selected and how the selected passages are connected are handled by two models that cooperate to select the most confident chains from a large set of candidates (from distant supervision). For evaluation, we created benchmarks based on two multi-hop QA datasets, HotpotQA and MedHop; and hand-labeled reasoning chains for the latter. The experimental results demonstrate the effectiveness of our proposed approach.
84 - Jiaxin Shi , Shulin Cao , Lei Hou 2021
Multi-hop Question Answering (QA) is a challenging task because it requires precise reasoning with entity relations at every step towards the answer. The relations can be represented in terms of labels in knowledge graph (e.g., textit{spouse}) or text in text corpus (e.g., textit{they have been married for 26 years}). Existing models usually infer the answer by predicting the sequential relation path or aggregating the hidden graph features. The former is hard to optimize, and the latter lacks interpretability. In this paper, we propose TransferNet, an effective and transparent model for multi-hop QA, which supports both label and text relations in a unified framework. TransferNet jumps across entities at multiple steps. At each step, it attends to different parts of the question, computes activated scores for relations, and then transfer the previous entity scores along activated relations in a differentiable way. We carry out extensive experiments on three datasets and demonstrate that TransferNet surpasses the state-of-the-art models by a large margin. In particular, on MetaQA, it achieves 100% accuracy in 2-hop and 3-hop questions. By qualitative analysis, we show that TransferNet has transparent and interpretable intermediate results.
We propose a novel method for exploiting the semantic structure of text to answer multiple-choice questions. The approach is especially suitable for domains that require reasoning over a diverse set of linguistic constructs but have limited training data. To address these challenges, we present the first system, to the best of our knowledge, that reasons over a wide range of semantic abstractions of the text, which are derived using off-the-shelf, general-purpose, pre-trained natural language modules such as semantic role labelers, coreference resolvers, and dependency parsers. Representing multiple abstractions as a family of graphs, we translate question answering (QA) into a search for an optimal subgraph that satisfies certain global and local properties. This formulation generalizes several prior structured QA systems. Our system, SEMANTICILP, demonstrates strong performance on two domains simultaneously. In particular, on a collection of challenging science QA datasets, it outperforms various state-of-the-art approaches, including neural models, broad coverage information retrieval, and specialized techniques using structured knowledge bases, by 2%-6%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا