Do you want to publish a course? Click here

On characteristic forms of positive vector bundles, mixed discriminants and pushforward identities

158   0   0.0 ( 0 )
 Added by Siarhei Finski
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove that Schur polynomials in Chern forms of Nakano and dual Nakano positive vector bundles are positive as differential forms. Moreover, modulo a statement about the positivity of a double mixed discriminant of linear operators on matrices, which preserve the cone of positive definite matrices, we establish that Schur polynomials in Chern forms of Griffiths positive vector bundles are weakly-positive as differential forms. This provides differential-geometr



rate research

Read More

216 - Enxin Wu 2021
In this paper, we study a new operation named pushforward on diffeological vector pseudo-bundles, which is left adjoint to the pullback. We show how to pushforward projective diffeological vector pseudo-bundles to get projective diffeological vector spaces, producing many concrete new examples. This brings new objects to diffeology from classical vector bundle theory.
Let ${mathcal B}_g(r)$ be the moduli space of triples of the form $(X,, K^{1/2}_X,, F)$, where $X$ is a compact connected Riemann surface of genus $g$, with $g, geq, 2$, $K^{1/2}_X$ is a theta characteristic on $X$, and $F$ is a stable vector bundle on $X$ of rank $r$ and degree zero. We construct a $T^*{mathcal B}_g(r)$--torsor ${mathcal H}_g(r)$ over ${mathcal B}_g(r)$. This generalizes on the one hand the torsor over the moduli space of stable vector bundles of rank $r$, on a fixed Riemann surface $Y$, given by the moduli space of holomorphic connections on the stable vector bundles of rank $r$ on $Y$, and on the other hand the torsor over the moduli space of Riemann surfaces given by the moduli space of Riemann surfaces with a projective structure. It is shown that ${mathcal H}_g(r)$ has a holomorphic symplectic structure compatible with the $T^*{mathcal B}_g(r)$--torsor structure. We also describe ${mathcal H}_g(r)$ in terms of the second order matrix valued differential operators. It is shown that ${mathcal H}_g(r)$ is identified with the $T^*{mathcal B}_g(r)$--torsor given by the sheaf of holomorphic connections on the theta line bundle over ${mathcal B}_g(r)$.
Over a smooth and proper complex scheme, the differential Galois group of an integrable connection may be obtained as the closure of the transcendental monodromy representation. In this paper, we employ a completely algebraic variation of this idea by restricting attention to connections on trivial vector bundles and replacing the fundamental group by a certain Lie algebra constructed from the regular forms. In more detail, we show that the differential Galois group is a certain ``closure of the aforementioned Lie algebra. This is then applied to construct connections on curves with prescribed differential Galois group.
For any two degrees coprime to the rank, we construct a family of ring isomorphisms parameterized by GSp(2g) between the cohomology of the moduli spaces of stable Higgs bundles which preserve the perverse filtrations. As consequences, we prove two structural results concerning the cohomology of Higgs moduli which are predicted by the P=W conjecture in non-abelian Hodge theory: (1) Galois conjugation for character varieties preserves the perverse filtrations for the corresponding Higgs moduli spaces. (2) The restriction of the Hodge-Tate decomposition for a character variety to each piece of the perverse filtration for the corresponding Higgs moduli space gives also a decomposition. Our proof uses reduction to positive characteristic and relies on the non-abelian Hodge correspondence in characteristic p between Dolbeault and de Rham moduli spaces.
We generalize a compactification technique due to C. Simpson in the context of $mathbb{G}_m$-actions over the ground field of complex numbers, to the case of a universally Japanese base ring. We complement this generalized compactification technique so that it can sometimes yield projectivity results for these compactifications. We apply these projectivity results to the Hodge, de Rham, and Dolbeault moduli spaces for curves, with special regards to ground fields of positive characteristic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا