Do you want to publish a course? Click here

Beyond COVID-19: Network science and sustainable exit strategies

272   0   0.0 ( 0 )
 Added by Philip Tee
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

On May $28^{th}$ and $29^{th}$, a two day workshop was held virtually, facilitated by the Beyond Center at ASU and Moogsoft Inc. The aim was to bring together leading scientists with an interest in Network Science and Epidemiology to attempt to inform public policy in response to the COVID-19 pandemic. Epidemics are at their core a process that progresses dynamically upon a network, and are a key area of study in Network Science. In the course of the workshop a wide survey of the state of the subject was conducted. We summarize in this paper a series of perspectives of the subject, and where the authors believe fruitful areas for future research are to be found.



rate research

Read More

We develop a minimalist compartmental model to study the impact of mobility restrictions in Italy during the Covid-19 outbreak. We show that an early lockdown shifts the epidemic in time, while that beyond a critical value of the lockdown strength, the epidemic tend to restart after lifting the restrictions. As a consequence, specific mitigation strategies must be introduced. We characterize the relative importance of different broad strategies by accounting for two fundamental sources of heterogeneity, i.e. geography and demography. First, we consider Italian regions as separate administrative entities, in which social interactions between age classs occur. Due to the sparsity of the inter-regional mobility matrix, once started the epidemics tend to develop independently across areas, justifying the adoption of solutions specific to individual regions or to clusters of regions. Second, we show that social contacts between age classes play a fundamental role and that measures which take into account the age structure of the population can provide a significant contribution to mitigate the rebound effects. Our model is general, and while it does not analyze specific mitigation strategies, it highlights the relevance of some key parameters on non-pharmaceutical mitigation mechanisms for the epidemics.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
Since the beginning of the COVID-19 spreading, the number of studies on the epidemic models increased dramatically. It is important for policy makers to know how the disease will spread, and what are the effects of the policies and environment on the spreading. In this paper, we propose two extensions to the standard infectious disease models: (a) We consider the prevention measures adopted based on the current severity of the infection, those measures are adaptive and change over time. (b) Multiple cities and regions are considered, with population movements between those cities/regions, while taking into account that each region may have different prevention measures. While the adaptive measures and mobility of the population were often observed during the pandemic, these effects are rarely explicitly modeled and studied in the classical epidemic models. The model we propose gives rise to a plateau phenomenon: the number of people infected by the disease stay at the same level during an extended period of time. We show what are conditions needs to be met in order for the spreading to exhibit a plateau period, and we show that this phenomenon is interdependent: when considering multiples cities, the conditions are different from a single city. We verify from the real-world data that plateau phenomenon does exists in many regions of the world in the current COVID-19 development. Finally, we provide theoretical analysis on the plateau phenomenon for the single-city model, and derive a series of results on the emergence and ending of the plateau, and on the height and length of the plateau. Our theoretical results match well with our empirical findings.
The impact of the ongoing COVID-19 pandemic is being felt in all spheres of our lives -- cutting across the boundaries of nation, wealth, religions or race. From the time of the first detection of infection among the public, the virus spread though almost all the countries in the world in a short period of time. With humans as the carrier of the virus, the spreading process necessarily depends on the their mobility after being infected. Not only in the primary spreading process, but also in the subsequent spreading of the mutant variants, human mobility plays a central role in the dynamics. Therefore, on one hand travel restrictions of varying degree were imposed and are still being imposed, by various countries both nationally and internationally. On the other hand, these restrictions have severe fall outs in businesses and livelihood in general. Therefore, it is an optimization process, exercised on a global scale, with multiple changing variables. Here we review the techniques and their effects on optimization or proposed optimizations of human mobility in different scales, carried out by data driven, machine learning and model approaches.
We analyze an epidemic model on a network consisting of susceptible-infected-recovered equations at the nodes coupled by diffusion using a graph Laplacian. We introduce an epidemic criterion and examine different vaccination/containment strategies: we prove that it is most effective to vaccinate a node of highest degree. The model is also useful to evaluate deconfinement scenarios and prevent a so-called second wave. The model has few parameters enabling fitting to the data and the essential ingredient of importation of infected; these features are particularly important for the current COVID-19 epidemic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا