Do you want to publish a course? Click here

ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data

166   0   0.0 ( 0 )
 Added by Xin Qian
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Visualization recommendation seeks to generate, score, and recommend to users useful visualizations automatically, and are fundamentally important for exploring and gaining insights into a new or existing dataset quickly. In this work, we propose the first end-to-end ML-based visualization recommendation system that takes as input a large corpus of datasets and visualizations, learns a model based on this data. Then, given a new unseen dataset from an arbitrary user, the model automatically generates visualizations for that new dataset, derive scores for the visualizations, and output a list of recommended visualizations to the user ordered by effectiveness. We also describe an evaluation framework to quantitatively evaluate visualization recommendation models learned from a large corpus of visualizations and datasets. Through quantitative experiments, a user study, and qualitative analysis, we show that our end-to-end ML-based system recommends more effective and useful visualizations compared to existing state-of-the-art rule-based systems. Finally, we observed a strong preference by the human experts in our user study towards the visualizations recommended by our ML-based system as opposed to the rule-based system (5.92 from a 7-point Likert scale compared to only 3.45).



rate research

Read More

153 - Xin Qian , Ryan A. Rossi , Fan Du 2021
Visualization recommendation work has focused solely on scoring visualizations based on the underlying dataset and not the actual user and their past visualization feedback. These systems recommend the same visualizations for every user, despite that the underlying user interests, intent, and visualization preferences are likely to be fundamentally different, yet vitally important. In this work, we formally introduce the problem of personalized visualization recommendation and present a generic learning framework for solving it. In particular, we focus on recommending visualizations personalized for each individual user based on their past visualization interactions (e.g., viewed, clicked, manually created) along with the data from those visualizations. More importantly, the framework can learn from visualizations relevant to other users, even if the visualizations are generated from completely different datasets. Experiments demonstrate the effectiveness of the approach as it leads to higher quality visualization recommendations tailored to the specific user intent and preferences. To support research on this new problem, we release our user-centric visualization corpus consisting of 17.4k users exploring 94k datasets with 2.3 million attributes and 32k user-generated visualizations.
Online recommendation and advertising are two major income channels for online recommendation platforms (e.g. e-commerce and news feed site). However, most platforms optimize recommending and advertising strategies by different teams separately via different techniques, which may lead to suboptimal overall performances. To this end, in this paper, we propose a novel two-level reinforcement learning framework to jointly optimize the recommending and advertising strategies, where the first level generates a list of recommendations to optimize user experience in the long run; then the second level inserts ads into the recommendation list that can balance the immediate advertising revenue from advertisers and the negative influence of ads on long-term user experience. To be specific, the first level tackles high combinatorial action space problem that selects a subset items from the large item space; while the second level determines three internally related tasks, i.e., (i) whether to insert an ad, and if yes, (ii) the optimal ad and (iii) the optimal location to insert. The experimental results based on real-world data demonstrate the effectiveness of the proposed framework. We have released the implementation code to ease reproductivity.
Recommending appropriate algorithms to a classification problem is one of the most challenging issues in the field of data mining. The existing algorithm recommendation models are generally constructed on only one kind of meta-features by single learners. Considering that i) ensemble learners usually show better performance and ii) different kinds of meta-features characterize the classification problems in different viewpoints independently, and further the models constructed with different sets of meta-features will be complementary with each other and applicable for ensemble. This paper proposes an ensemble learning-based algorithm recommendation method. To evaluate the proposed recommendation method, extensive experiments with 13 well-known candidate classification algorithms and five different kinds of meta-features are conducted on 1090 benchmark classification problems. The results show the effectiveness of the proposed ensemble learning based recommendation method.
Most existing recommender systems leverage user behavior data of one type only, such as the purchase behavior in E-commerce that is directly related to the business KPI (Key Performance Indicator) of conversion rate. Besides the key behavioral data, we argue that other forms of user behaviors also provide valuable signal, such as views, clicks, adding a product to shop carts and so on. They should be taken into account properly to provide quality recommendation for users. In this work, we contribute a new solution named NMTR (short for Neural Multi-Task Recommendation) for learning recommender systems from user multi-behavior data. We develop a neural network model to capture the complicated and multi-type interactions between users and items. In particular, our model accounts for the cascading relationship among different types of behaviors (e.g., a user must click on a product before purchasing it). To fully exploit the signal in the data of multiple types of behaviors, we perform a joint optimization based on the multi-task learning framework, where the optimization on a behavior is treated as a task. Extensive experiments on two real-world datasets demonstrate that NMTR significantly outperforms state-of-the-art recommender systems that are designed to learn from both single-behavior data and multi-behavior data. Further analysis shows that modeling multiple behaviors is particularly useful for providing recommendation for sparse users that have very few interactions.
Data visualization should be accessible for all analysts with data, not just the few with technical expertise. Visualization recommender systems aim to lower the barrier to exploring basic visualizations by automatically generating results for analysts to search and select, rather than manually specify. Here, we demonstrate a novel machine learning-based approach to visualization recommendation that learns visualization design choices from a large corpus of datasets and associated visualizations. First, we identify five key design choices made by analysts while creating visualizations, such as selecting a visualization type and choosing to encode a column along the X- or Y-axis. We train models to predict these design choices using one million dataset-visualization pairs collected from a popular online visualization platform. Neural networks predict these design choices with high accuracy compared to baseline models. We report and interpret feature importances from one of these baseline models. To evaluate the generalizability and uncertainty of our approach, we benchmark with a crowdsourced test set, and show that the performance of our model is comparable to human performance when predicting consensus visualization type, and exceeds that of other ML-based systems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا