Do you want to publish a course? Click here

Design and Implementation of TAG: A Tabletop Games Framework

40   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This document describes the design and implementation of the Tabletop Games framework (TAG), a Java-based benchmark for developing modern board games for AI research. TAG provides a common skeleton for implementing tabletop games based on a common API for AI agents, a set of components and classes to easily add new games and an import module for defining data in JSON format. At present, this platform includes the implementation of seven different tabletop games that can also be used as an example for further developments. Additionally, TAG also incorporates logging functionality that allows the user to perform a detailed analysis of the game, in terms of action space, branching factor, hidden information, and other measures of interest for Game AI research. The objective of this document is to serve as a central point where the framework can be described at length. TAG can be downloaded at: https://github.com/GAIGResearch/TabletopGames



rate research

Read More

Stratega, a general strategy games framework, has been designed to foster research on computational intelligence for strategy games. In contrast to other strategy game frameworks, Stratega allows to create a wide variety of turn-based and real-time strategy games using a common API for agent development. While the current version supports the development of turn-based strategy games and agents, we will add support for real-time strategy games in future updates. Flexibility is achieved by utilising YAML-files to configure tiles, units, actions, and levels. Therefore, the user can design and run a variety of games to test developed agents without specifically adjusting it to the game being generated. The framework has been built with a focus of statistical forward planning (SFP) agents. For this purpose, agents can access and modify game-states and use the forward model to simulate the outcome of their actions. While SFP agents have shown great flexibility in general game-playing, their performance is limited in case of complex state and action-spaces. Finally, we hope that the development of this framework and its respective agents helps to better understand the complex decision-making process in strategy games. Stratega can be downloaded at: https://github.research.its.qmul.ac.uk/eecsgameai/Stratega
In recent years, trends towards studying simulated games have gained momentum in the fields of artificial intelligence, cognitive science, psychology, and neuroscience. The intersections of these fields have also grown recently, as researchers increasing study such games using both artificial agents and human or animal subjects. However, implementing games can be a time-consuming endeavor and may require a researcher to grapple with complex codebases that are not easily customized. Furthermore, interdisciplinary researchers studying some combination of artificial intelligence, human psychology, and animal neurophysiology face additional challenges, because existing platforms are designed for only one of these domains. Here we introduce Modular Object-Oriented Games, a Python task framework that is lightweight, flexible, customizable, and designed for use by machine learning, psychology, and neurophysiology researchers.
To speedup Deep Neural Networks (DNN) accelerator design and enable effective implementation, we propose HybridDNN, a framework for building high-performance hybrid DNN accelerators and delivering FPGA-based hardware implementations. Novel techniques include a highly flexible and scalable architecture with a hybrid Spatial/Winograd convolution (CONV) Processing Engine (PE), a comprehensive design space exploration tool, and a complete design flow to fully support accelerator design and implementation. Experimental results show that the accelerators generated by HybridDNN can deliver 3375.7 and 83.3 GOPS on a high-end FPGA (VU9P) and an embedded FPGA (PYNQ-Z1), respectively, which achieve a 1.8x higher performance improvement compared to the state-of-art accelerator designs. This demonstrates that HybridDNN is flexible and scalable and can target both cloud and embedded hardware platforms with vastly different resource constraints.
Mobile nodes, in particular smartphones are one of the most relevant devices in the current Internet in terms of quantity and economic impact. There is the common believe that those devices are of special interest for attackers due to their limited resources and the serious data they store. On the other hand, the mobile regime is a very lively network environment, which misses the (limited) ground truth we have in commonly connected Internet nodes. In this paper we argue for a simple long-term measurement infrastructure that allows for (1) the analysis of unsolicited traffic to and from mobile devices and (2) fair comparison with wired Internet access. We introduce the design and implementation of a mobile honeypot, which is deployed on standard hardware for more than 1.5 years. Two independent groups developed the same concept for the system. We also present preliminary measurement results.
We attempt to automate various artistic processes by inventing a set of drawing games, analogous to the approach taken by emergent language research in inventing communication games. A critical difference is that drawing games demand much less effort from the receiver than do language games. Artists must work with pre-trained viewers who spend little time learning artist specific representational conventions, but who instead have a pre-trained visual system optimized for behaviour in the world by understanding to varying extents the environments visual affordances. After considering various kinds of drawing game we present some preliminary experiments which have generated images by closing the generative-critical loop.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا