Do you want to publish a course? Click here

New categories of Safe Faults in a processor-based Embedded System

70   0   0.0 ( 0 )
 Added by Cemil Cem Gursoy
 Publication date 2020
and research's language is English
 Authors C. C. Gursoy




Ask ChatGPT about the research

The identification of safe faults (i.e., faults which are guaranteed not to produce any failure) in an electronic system is a crucial step when analyzing its dependability and its test plan development. Unfortunately, safe fault identification is poorly supported by available EDA tools, and thus remains an open problem. The complexity growth of modern systems used in safety-critical applications further complicates their identification. In this article, we identify some classes of safe faults within an embedded system based on a pipelined processor. A new method for automating the safe fault identification is also proposed. The safe faults belonging to each class are identified resorting to Automatic Test Pattern Generation (ATPG) techniques. The proposed methodology is applied to a sample system built around the OpenRisc1200 open source processor.



rate research

Read More

401 - Jia Yu , Wei Wu , Xi Chen 2007
With the scaling of technology and higher requirements on performance and functionality, power dissipation is becoming one of the major design considerations in the development of network processors. In this paper, we use an assertion-based methodology for system-level power/performance analysis to study two dynamic voltage scaling (DVS) techniques, traffic-based DVS and execution-based DVS, in a network processor model. Using the automatically generated distribution analyzers, we analyze the power and performance distributions and study their trade-offs for the two DVS policies with different parameter settings such as threshold values and window sizes. We discuss the optimal configurations of the two DVS policies under different design requirements. By a set of experiments, we show that the assertion-based trace analysis methodology is an efficient tool that can help a designer easily compare and study optimal architectural configurations in a large design space.
In this paper, we propose a very compact embedded CNN processor design based on a modified logarithmic computing method using very low bit-width representation. Our high-quality CNN processor can easily fit into edge devices. For Yolov2, our processing circuit takes only 0.15 mm2 using TSMC 40 nm cell library. The key idea is to constrain the activation and weight values of all layers uniformly to be within the range [-1, 1] and produce low bit-width logarithmic representation. With the uniform representations, we devise a unified, reusable CNN computing kernel and significantly reduce computing resources. The proposed approach has been extensively evaluated on many popular image classification CNN models (AlexNet, VGG16, and ResNet-18/34) and object detection models (Yolov2). The hardware-implemented results show that our design consumes only minimal computing and storage resources, yet attains very high accuracy. The design is thoroughly verified on FPGAs, and the SoC integration is underway with promising results. With extremely efficient resource and energy usage, our design is excellent for edge computing purposes.
Memory system is often the main bottleneck in chipmultiprocessor (CMP) systems in terms of latency, bandwidth and efficiency, and recently additionally facing capacity and power problems in an era of big data. A lot of research works have been done to address part of these problems, such as photonics technology for bandwidth, 3D stacking for capacity, and NVM for power as well as many micro-architecture level innovations. Many of them need a modification of current memory architecture, since the decades-old synchronous memory architecture (SDRAM) has become an obstacle to adopt those advances. However, to the best of our knowledge, none of them is able to provide a universal memory interface that is scalable enough to cover all these problems. In this paper, we argue that a message-based interface should be adopted to replace the traditional bus-based interface in memory system. A novel message interface based memory system (MIMS) is proposed. The key innovation of MIMS is that processor and memory system communicate through a universal and flexible message interface. Each message packet could contain multiple memory requests or commands along with various semantic information. The memory system is more intelligent and active by equipping with a local buffer scheduler, which is responsible to process packet, schedule memory requests, and execute specific commands with the help of semantic information. The experimental results by simulator show that, with accurate granularity message, the MIMS would improve performance by 53.21%, while reducing energy delay product (EDP) by 55.90%, the effective bandwidth utilization is improving by 62.42%. Furthermore, combining multiple requests in a packet would reduce link overhead and provide opportunity for address compression.
We present ESP4ML, an open-source system-level design flow to build and program SoC architectures for embedded applications that require the hardware acceleration of machine learning and signal processing algorithms. We realized ESP4ML by combining two established open-source projects (ESP and HLS4ML) into a new, fully-automated design flow. For the SoC integration of accelerators generated by HLS4ML, we designed a set of new parameterized interface circuits synthesizable with high-level synthesis. For accelerator configuration and management, we developed an embedded software runtime system on top of Linux. With this HW/SW layer, we addressed the challenge of dynamically shaping the data traffic on a network-on-chip to activate and support the reconfigurable pipelines of accelerators that are needed by the application workloads currently running on the SoC. We demonstrate our vertically-integrated contributions with the FPGA-based implementations of complete SoC instances booting Linux and executing computer-vision applications that process images taken from the Google Street View database.
This paper describes the architecture, the development and the implementation of Janus II, a new generation application-driven number cruncher optimized for Monte Carlo simulations of spin systems (mainly spin glasses). This domain of computational physics is a recognized grand challenge of high-performance computing: the resources necessary to study in detail theoretical models that can make contact with experimental data are by far beyond those available using commodity computer systems. On the other hand, several specific features of the associated algorithms suggest that unconventional computer architectures, which can be implemented with available electronics technologies, may lead to order of magnitude increases in performance, reducing to acceptable values on human scales the time needed to carry out simulation campaigns that would take centuries on commercially available machines. Janus II is one such machine, recently developed and commissioned, that builds upon and improves on the successful JANUS machine, which has been used for physics since 2008 and is still in operation today. This paper describes in detail the motivations behind the project, the computational requirements, the architecture and the implementation of this new machine and compares its expected performances with those of currently available commercial systems.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا