Do you want to publish a course? Click here

Assertion-Based Design Exploration of DVS in Network Processor Architectures

407   0   0.0 ( 0 )
 Publication date 2007
and research's language is English




Ask ChatGPT about the research

With the scaling of technology and higher requirements on performance and functionality, power dissipation is becoming one of the major design considerations in the development of network processors. In this paper, we use an assertion-based methodology for system-level power/performance analysis to study two dynamic voltage scaling (DVS) techniques, traffic-based DVS and execution-based DVS, in a network processor model. Using the automatically generated distribution analyzers, we analyze the power and performance distributions and study their trade-offs for the two DVS policies with different parameter settings such as threshold values and window sizes. We discuss the optimal configurations of the two DVS policies under different design requirements. By a set of experiments, we show that the assertion-based trace analysis methodology is an efficient tool that can help a designer easily compare and study optimal architectural configurations in a large design space.



rate research

Read More

The architecture of a coarse-grained reconfigurable array (CGRA) processing element (PE) has a significant effect on the performance and energy efficiency of an application running on the CGRA. This paper presents an automated approach for generating specialized PE architectures for an application or an application domain. Frequent subgraphs mined from a set of applications are merged to form a PE architecture specialized to that application domain. For the image processing and machine learning domains, we generate specialized PEs that are up to 10.5x more energy efficient and consume 9.1x less area than a baseline PE.
We present CLEAR (Cross-Layer Exploration for Architecting Resilience), a first of its kind framework which overcomes a major challenge in the design of digital systems that are resilient to reliability failures: achieve desired resilience targets at minimal costs (energy, power, execution time, area) by combining resilience techniques across various layers of the system stack (circuit, logic, architecture, software, algorithm). This is also referred to as cross-layer resilience. In this paper, we focus on radiation-induced soft errors in processor cores. We address both single-event upsets (SEUs) and single-event multiple upsets (SEMUs) in terrestrial environments. Our framework automatically and systematically explores the large space of comprehensive resilience techniques and their combinations across various layers of the system stack (586 cross-layer combinations in this paper), derives cost-effective solutions that achieve resilience targets at minimal costs, and provides guidelines for the design of new resilience techniques. Our results demonstrate that a carefully optimized combination of circuit-level hardening, logic-level parity checking, and micro-architectural recovery provides a highly cost-effective soft error resilience solution for general-purpose processor cores. For example, a 50x improvement in silent data corruption rate is achieved at only 2.1% energy cost for an out-of-order core (6.1% for an in-order core) with no speed impact. However, (application-aware) selective circuit-level hardening alone, guided by a thorough analysis of the effects of soft errors on application benchmarks, provides a cost-effective soft error resilience solution as well (with ~1% additional energy cost for a 50x improvement in silent data corruption rate).
Independent of the technology, it is generally expected that future nanoscale devices will be built from vast numbers of densely arranged devices that exhibit high failure rates. Other than that, there is little consensus on what type of technology and computing architecture holds most promises to go far beyond todays top-down engineered silicon devices. Cellular automata (CA) have been proposed in the past as a possible class of architectures to the von Neumann computing architecture, which is not generally well suited for future parallel and fine-grained nanoscale electronics. While the top-down engineered semi-conducting technology favors regular and locally interconnected structures, future bottom-up self-assembled devices tend to have irregular structures because of the current lack precise control over these processes. In this paper, we will assess random dynamical networks, namely Random Boolean Networks (RBNs) and Random Threshold Networks (RTNs), as alternative computing architectures and models for future information processing devices. We will illustrate that--from a theoretical perspective--they offer superior properties over classical CA-based architectures, such as inherent robustness as the system scales up, more efficient information processing capabilities, and manufacturing benefits for bottom-up designed devices, which motivates this investigation. We will present recent results on the dynamic behavior and robustness of such random dynamical networks while also including manufacturing issues in the assessment.
69 - C. C. Gursoy 2020
The identification of safe faults (i.e., faults which are guaranteed not to produce any failure) in an electronic system is a crucial step when analyzing its dependability and its test plan development. Unfortunately, safe fault identification is poorly supported by available EDA tools, and thus remains an open problem. The complexity growth of modern systems used in safety-critical applications further complicates their identification. In this article, we identify some classes of safe faults within an embedded system based on a pipelined processor. A new method for automating the safe fault identification is also proposed. The safe faults belonging to each class are identified resorting to Automatic Test Pattern Generation (ATPG) techniques. The proposed methodology is applied to a sample system built around the OpenRisc1200 open source processor.
424 - Shaoshan Liu , Yuhao Zhu , Bo Yu 2021
The commercialization of autonomous machines is a thriving sector, and likely to be the next major computing demand driver, after PC, cloud computing, and mobile computing. Nevertheless, a suitable computer architecture for autonomous machines is missing, and many companies are forced to develop ad hoc computing solutions that are neither scalable nor extensible. In this article, we analyze the demands of autonomous machine computing, and argue for the promise of dataflow architectures in autonomous machines.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا