Do you want to publish a course? Click here

Beamforming Design for Multiuser Transmission Through Reconfigurable Intelligent Surface

88   0   0.0 ( 0 )
 Added by Zhaohui Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper investigates the problem of resource allocation for multiuser communication networks with a reconfigurable intelligent surface (RIS)-assisted wireless transmitter. In this network, the sum transmit power of the network is minimized by controlling the phase beamforming of the RIS and transmit power of the BS. This problem is posed as a joint optimization problem of transmit power and RIS control, whose goal is to minimize the sum transmit power under signal-to-interference-plus-noise ratio (SINR) constraints of the users. To solve this problem, a dual method is proposed, where the dual problem is obtained as a semidefinite programming problem. After solving the dual problem, the phase beamforming of the RIS is obtained in the closed form, while the optimal transmit power is obtained by using the standard interference function. Simulation results show that the proposed scheme can reduce up to 94% and 27% sum transmit power compared to the maximum ratio transmission (MRT) beamforming and zero-forcing (ZF) beamforming techniques, respectively.



rate research

Read More

Reconfigurable intelligent surface (RIS) is a new paradigm that has great potential to achieve cost-effective, energy-efficient information modulation for wireless transmission, by the ability to change the reflection coefficients of the unit cells of a programmable metasurface. Nevertheless, the electromagnetic responses of the RISs are usually only phase-adjustable, which considerably limits the achievable rate of RIS-based transmitters. In this paper, we propose an RIS architecture to achieve amplitude-and-phase-varying modulation, which facilitates the design of multiple-input multiple-output (MIMO) quadrature amplitude modulation (QAM) transmission. The hardware constraints of the RIS and their impacts on the system design are discussed and analyzed. Furthermore, the proposed approach is evaluated using our prototype which implements the RIS-based MIMO-QAM transmission over the air in real time.
Intelligent reflecting surfaces (IRSs) constitute passive devices, which are capable of adjusting the phase shifts of their reflected signals, and hence they are suitable for passive beamforming. In this paper, we conceive their design with the active beamforming action of multiple-input multipleoutput (MIMO) systems used at the access points (APs) for improving the beamforming gain, where both the APs and users are equipped with multiple antennas. Firstly, we decouple the optimization problem and design the active beamforming for a given IRS configuration. Then we transform the optimization problem of the IRS-based passive beamforming design into a tractable non-convex quadratically constrained quadratic program (QCQP). For solving the transformed problem, we give an approximate solution based on the technique of widely used semidefinite relaxation (SDR). We also propose a low-complexity iterative solution. We further prove that it can converge to a locally optimal value. Finally, considering the practical scenario of discrete phase shifts at the IRS, we give the quantization design for IRS elements on basis of the two solutions. Our simulation results demonstrate the superiority of the proposed solutions over the relevant benchmarks.
112 - Gui Zhou , Cunhua Pan , Hong Ren 2019
Perfect channel state information (CSI) is challenging to obtain due to the limited signal processing capability at the intelligent reflection surface (IRS). In this paper, we study the worst-case robust beamforming design for an IRS-aided multiuser multiple-input single-output (MU-MISO) system under the assumption of imperfect CSI. We aim for minimizing the transmit power while ensuring that the achievable rate of each user meets the quality of service (QoS) requirement for all possible channel error realizations. With unit-modulus and rate constraints, this problem is non-convex. The imperfect CSI further increases the difficulty of solving this problem. By using approximation and transformation techniques, we convert this problem into a squence of semidefinite programming (SDP) subproblems that can be efficiently solved. Numerical results show that the proposed robust beamforming design can guarantee the required QoS targets for all the users.
In this paper, we consider a reconfigurable intelligent surface (RIS)-assisted two-way relay network, in which two users exchange information through the base station (BS) with the help of an RIS. By jointly designing the phase shifts at the RIS and beamforming matrix at the BS, our objective is to maximize the minimum signal-to-noise ratio (SNR) of the two users, under the transmit power constraint at the BS. We first consider the single-antenna BS case, and propose two algorithms to design the RIS phase shifts and the BS power amplification parameter, namely the SNR-upper-bound-maximization (SUM) method, and genetic-SNR-maximization (GSM) method. When there are multiple antennas at the BS, the optimization problem can be approximately addressed by successively solving two decoupled subproblems, one to optimize the RIS phase shifts, the other to optimize the BS beamforming matrix. The first subproblem can be solved by using SUM or GSM method, while the second subproblem can be solved by using optimized beamforming or maximum-ratio-beamforming method. The proposed algorithms have been verified through numerical results with computational complexity analysis.
Intelligent reflecting surface (IRS) is a promising solution to build a programmable wireless environment for future communication systems, in which the reflector elements steer the incident signal in fully customizable ways by passive beamforming. In this paper, an IRS-aided secure spatial modulation (SM) is proposed, where the IRS perform passive beamforming and information transfer simultaneously by adjusting the on-off states of the reflecting elements. We formulate an optimization problem to maximize the average secrecy rate (SR) by jointly optimizing the passive beamforming at IRS and the transmit power at transmitter under the consideration that the direct pathes channels from transmitter to receivers are obstructed by obstacles. As the expression of SR is complex, we derive a newly fitting expression (NASR) for the expression of traditional approximate SR (TASR), which has simpler closed-form and more convenient for subsequent optimization. Based on the above two fitting expressions, three beamforming methods, called maximizing NASR via successive convex approximation (Max-NASR-SCA), maximizing NASR via dual ascent (Max-NASR-DA) and maximizing TASR via semi-definite relaxation (Max-TASR-SDR) are proposed to improve the SR performance. Additionally, two transmit power design (TPD) methods are proposed based on the above two approximate SR expressions, called Max-NASR-TPD and Max-TASR-TPD. Simulation results show that the proposed Max-NASR-DA and Max-NASR-SCA IRS beamformers harvest substantial SR performance gains over Max-TASR-SDR. For TPD, the proposed Max-NASR-TPD performs better than Max-TASR-TPD. Particularly, the Max-NASR-TPD has a closed-form solution.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا