Do you want to publish a course? Click here

Robust Finite-State Controllers for Uncertain POMDPs

76   0   0.0 ( 0 )
 Added by Nils Jansen
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Uncertain partially observable Markov decision processes (uPOMDPs) allow the probabilistic transition and observation functions of standard POMDPs to belong to a so-called uncertainty set. Such uncertainty, referred to as epistemic uncertainty, captures uncountable sets of probability distributions caused by, for instance, a lack of data available. We develop an algorithm to compute finite-memory policies for uPOMDPs that robustly satisfy specifications against any admissible distribution. In general, computing such policies is theoretically and practically intractable. We provide an efficient solution to this problem in four steps. (1) We state the underlying problem as a nonconvex optimization problem with infinitely many constraints. (2) A dedicated dualization scheme yields a dual problem that is still nonconvex but has finitely many constraints. (3) We linearize this dual problem and (4) solve the resulting finite linear program to obtain locally optimal solutions to the original problem. The resulting problem formulation is exponentially smaller than those resulting from existing methods. We demonstrate the applicability of our algorithm using large instances of an aircraft collision-avoidance scenario and a novel spacecraft motion planning case study.



rate research

Read More

We study finite-state controllers (FSCs) for partially observable Markov decision processes (POMDPs) that are provably correct with respect to given specifications. The key insight is that computing (randomised) FSCs on POMDPs is equivalent to - and computationally as hard as - synthesis for parametric Markov chains (pMCs). This correspondence allows to use tools for parameter synthesis in pMCs to compute correct-by-construction FSCs on POMDPs for a variety of specifications. Our experimental evaluation shows comparable performance to well-known POMDP solvers.
We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probability intervals. Such a model arises when, for example, an agent operates under information limitation due to imperfect knowledge about the accuracy of its sensors. The goal is to compute a policy for the agent that is robust against all possible probability distributions within the uncertainty set. In particular, we are interested in a policy that robustly ensures the satisfaction of temporal logic and expected reward specifications. We state the underlying optimization problem as a semi-infinite quadratically-constrained quadratic program (QCQP), which has finitely many variables and infinitely many constraints. Since QCQPs are non-convex in general and practically infeasible to solve, we resort to the so-called convex-concave procedure to convexify the QCQP. Even though convex, the resulting optimization problem still has infinitely many constraints and is NP-hard. For uncertainty sets that form convex polytopes, we provide a transformation of the problem to a convex QCQP with finitely many constraints. We demonstrate the feasibility of our approach by means of several case studies that highlight typical bottlenecks for our problem. In particular, we show that we are able to solve benchmarks with hundreds of thousands of states, hundreds of different observations, and we investigate the effect of different levels of uncertainty in the models.
The need for robust control laws is especially important in safety-critical applications. We propose robust hybrid control barrier functions as a means to synthesize control laws that ensure robust safety. Based on this notion, we formulate an optimization problem for learning robust hybrid control barrier functions from data. We identify sufficient conditions on the data such that feasibility of the optimization problem ensures correctness of the learned robust hybrid control barrier functions. Our techniques allow us to safely expand the region of attraction of a compass gait walker that is subject to model uncertainty.
Real-time optimization of traffic flow addresses important practical problems: reducing a drivers wasted time, improving city-wide efficiency, reducing gas emissions and improving air quality. Much of the current research in traffic-light optimization relies on extending the capabilities of traffic lights to either communicate with each other or communicate with vehicles. However, before such capabilities become ubiquitous, opportunities exist to improve traffic lights by being more responsive to current traffic situations within the current, already deployed, infrastructure. In this paper, we introduce a traffic light controller that employs bidding within micro-auctions to efficiently incorporate traffic sensor information; no other outside sources of information are assumed. We train and test traffic light controllers on large-scale data collected from opted-in Android cell-phone users over a period of several months in Mountain View, California and the River North neighborhood of Chicago, Illinois. The learned auction-based controllers surpass (in both the relevant metrics of road-capacity and mean travel time) the currently deployed lights, optimized static-program lights, and longer-term planning approaches, in both cities, measured using real user driving data.
Partially-Observable Markov Decision Processes (POMDPs) are a well-known stochastic model for sequential decision making under limited information. We consider the EXPTIME-hard problem of synthesising policies that almost-surely reach some goal state without ever visiting a bad state. In particular, we are interested in computing the winning region, that is, the set of system configurations from which a policy exists that satisfies the reachability specification. A direct application of such a winning region is the safe exploration of POMDPs by, for instance, restricting the behavior of a reinforcement learning agent to the region. We present two algorithms: A novel SAT-based iterative approach and a decision-diagram based alternative. The empirical evaluation demonstrates the feasibility and efficacy of the approaches.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا