Do you want to publish a course? Click here

Robust Policy Synthesis for Uncertain POMDPs via Convex Optimization

64   0   0.0 ( 0 )
 Added by Murat Cubuktepe
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We study the problem of policy synthesis for uncertain partially observable Markov decision processes (uPOMDPs). The transition probability function of uPOMDPs is only known to belong to a so-called uncertainty set, for instance in the form of probability intervals. Such a model arises when, for example, an agent operates under information limitation due to imperfect knowledge about the accuracy of its sensors. The goal is to compute a policy for the agent that is robust against all possible probability distributions within the uncertainty set. In particular, we are interested in a policy that robustly ensures the satisfaction of temporal logic and expected reward specifications. We state the underlying optimization problem as a semi-infinite quadratically-constrained quadratic program (QCQP), which has finitely many variables and infinitely many constraints. Since QCQPs are non-convex in general and practically infeasible to solve, we resort to the so-called convex-concave procedure to convexify the QCQP. Even though convex, the resulting optimization problem still has infinitely many constraints and is NP-hard. For uncertainty sets that form convex polytopes, we provide a transformation of the problem to a convex QCQP with finitely many constraints. We demonstrate the feasibility of our approach by means of several case studies that highlight typical bottlenecks for our problem. In particular, we show that we are able to solve benchmarks with hundreds of thousands of states, hundreds of different observations, and we investigate the effect of different levels of uncertainty in the models.



rate research

Read More

Uncertain partially observable Markov decision processes (uPOMDPs) allow the probabilistic transition and observation functions of standard POMDPs to belong to a so-called uncertainty set. Such uncertainty, referred to as epistemic uncertainty, captures uncountable sets of probability distributions caused by, for instance, a lack of data available. We develop an algorithm to compute finite-memory policies for uPOMDPs that robustly satisfy specifications against any admissible distribution. In general, computing such policies is theoretically and practically intractable. We provide an efficient solution to this problem in four steps. (1) We state the underlying problem as a nonconvex optimization problem with infinitely many constraints. (2) A dedicated dualization scheme yields a dual problem that is still nonconvex but has finitely many constraints. (3) We linearize this dual problem and (4) solve the resulting finite linear program to obtain locally optimal solutions to the original problem. The resulting problem formulation is exponentially smaller than those resulting from existing methods. We demonstrate the applicability of our algorithm using large instances of an aircraft collision-avoidance scenario and a novel spacecraft motion planning case study.
Probabilistic model checking aims to prove whether a Markov decision process (MDP) satisfies a temporal logic specification. The underlying methods rely on an often unrealistic assumption that the MDP is precisely known. Consequently, parametric MDPs (pMDPs) extend MDPs with transition probabilities that are functions over unspecified parameters. The parameter synthesis problem is to compute an instantiation of these unspecified parameters such that the resulting MDP satisfies the temporal logic specification. We formulate the parameter synthesis problem as a quadratically constrained quadratic program (QCQP), which is nonconvex and is NP-hard to solve in general. We develop two approaches that iteratively obtain locally optimal solutions. The first approach exploits the so-called convex-concave procedure (CCP), and the second approach utilizes a sequential convex programming (SCP) method. The techniques improve the runtime and scalability by multiple orders of magnitude compared to black-box CCP and SCP by merging ideas from convex optimization and probabilistic model checking. We demonstrate the approaches on a satellite collision avoidance problem with hundreds of thousands of states and tens of thousands of parameters and their scalability on a wide range of commonly used benchmarks.
We present mathematical methods, based on convex optimization, for correcting non-physical coherency matrices measured in polarimetry. We also develop the method for recovering the coherency matrices corresponding to the smallest and largest values of the degree of polarization given the experimental data and a specified tolerance. We use experimental non-physical results obtained with the standard polarimetry scheme and a commercial polarimeter to illustrate these methods. Our techniques are applied in post-processing, which complements other experimental methods for robust polarimetry.
120 - Pengcheng Zhao , Shankar Mohan , 2016
This paper addresses the problem of control synthesis for nonlinear optimal control problems in the presence of state and input constraints. The presented approach relies upon transforming the given problem into an infinite-dimensional linear program over the space of measures. To generate approximations to this infinite-dimensional program, a sequence of Semi-Definite Programs (SDP)s is formulated in the instance of polynomial cost and dynamics with semi-algebraic state and bounded input constraints. A method to extract a polynomial control function from each SDP is also given. This paper proves that the controller synthesized from each of these SDPs generates a sequence of values that converge from below to the value of the optimal control of the original optimal control problem. In contrast to existing approaches, the presented method does not assume that the optimal control is continuous while still proving that the sequence of approximations is optimal. Moreover, the sequence of controllers that are synthesized using the presented approach are proven to converge to the true optimal control. The performance of the presented method is demonstrated on three examples.
This paper presents a convex sufficient condition for solving a system of nonlinear equations under parametric changes and proposes a sequential convex optimization method for solving robust optimization problems with nonlinear equality constraints. By bounding the nonlinearity with concave envelopes and using Brouwers fixed point theorem, the sufficient condition is expressed in terms of closed-form convex inequality constraints. We extend the result to provide a convex sufficient condition for feasibility under bounded uncertainty. Using these conditions, a non-convex optimization problem can be solved as a sequence of convex optimization problems, with feasibility and robustness guarantees. We present a detailed analysis of the performance and complexity of the proposed condition. The examples in polynomial optimization and nonlinear network are provided to illustrate the proposed method.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا