Do you want to publish a course? Click here

Temperature in and out of equilibrium: a review of concepts, tools and attempts

48   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We review the general aspects of the concept of temperature in equilibrium and non-equilibrium statistical mechanics. Although temperature is an old and well-established notion, it still presents controversial facets. After a short historical survey of the key role of temperature in thermodynamics and statistical mechanics, we tackle a series of issues which have been recently reconsidered. In particular, we discuss different definitions and their relevance for energy fluctuations. The interest in such a topic has been triggered by the recent observation of negative temperatures in condensed matter experiments. Moreover, the ability to manipulate systems at the micro and nano-scale urges to understand and clarify some aspects related to the statistical properties of small systems (as the issue of temperatures fluctuations). We also discuss the notion of temperature in a dynamical context, within the theory of linear response for Hamiltonian systems at equilibrium and stochastic models with detailed balance, and the generalised fluctuation-response relations, which provide a hint for an extension of the definition of temperature in far-from-equilibrium systems. To conclude we consider non-Hamiltonian systems, such as granular materials, turbulence and active matter, where a general theoretical framework is still lacking.



rate research

Read More

We introduce a scheme for deriving an optimally-parametrised Langevin dynamics of few collective variables from data generated in molecular dynamics simulations. The drift and the position-dependent diffusion profiles governing the Langevin dynamics are expressed as explicit averages over the input trajectories. The proposed strategy is applicable to cases when the input trajectories are generated by subjecting the system to a external time-dependent force (as opposed to canonically-equilibrated trajectories). Secondly, it provides an explicit control on the statistical uncertainty of the drift and diffusion profiles. These features lend to the possibility of designing the external force driving the system so to maximize the accuracy of the drift and diffusions profile throughout the phase space of interest. Quantitative criteria are also provided to assess a posteriori the satisfiability of the requisites for applying the method, namely the Markovian character of the stochastic dynamics of the collective variables.
The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.
We investigate the possibility of extending the notion of temperature in a stochastic model for the RNA/protein folding driven out of equilibrium. We simulate the dynamics of a small RNA hairpin subject to an external pulling force, which is time-dependent. First, we consider a fluctuation-dissipation relation (FDR) whereby we verify that various effective temperatures can be obtained for different observables, only when the slowest intrinsic relaxation timescale of the system regulates the dynamics of the system. Then, we introduce a different nonequilibrium temperature, which is defined from the rate of heat exchanged with a weakly-interacting thermal bath. Notably, this kinetic temperature can be defined for any frequency of the external switching force. We also discuss and compare the behavior of these two emerging parameters, by discriminating the time-delayed nature of the FDR temperature from the instantaneous character of the kinetic temperature. The validity of our numerics are corroborated by a simple 4-state Markov model which describes the long-time behaviour of the RNA molecule.
Condensation of fluctuations is an interesting phenomenon conceptually distinct from condensation on average. One stricking feature is that, contrary to what happens on average, condensation of fluctuations may occurr even in the absence of interaction. The explanation emerges from the duality between large deviation events in the given system and typical events in a new and appropriately biased system. This surprising phenomenon is investigated in the context of the Gaussian model, chosen as paradigmatical non interacting system, before and after an istantaneous temperature quench. It is shown that the bias induces a mean-field-like effective interaction responsible of the condensation on average. Phase diagrams, covering both the equilibrium and the off-equilibrium regimes, are derived for observables representative of generic behaviors.
Granular matter is comprised of a large number of particles whose collective behavior determines macroscopic properties such as flow and mechanical strength. A comprehensive theory of the properties of granular matter, therefore, requires a statistical framework. In molecular matter, equilibrium statistical mechanics, which is founded on the principle of conservation of energy, provides this framework. Grains, however, are small but macroscopic objects whose interactions are dissipative since energy can be lost through excitations of the internal degrees of freedom. In this work, we construct a statistical framework for static, mechanically stable packings of grains, which parallels that of equilibrium statistical mechanics but with conservation of energy replaced by the conservation of a function related to the mechanical stress tensor. Our analysis demonstrates the existence of a state function that has all the attributes of entropy. In particular, maximizing this state function leads to a well-defined granular temperature for these systems. Predictions of the ensemble are verified against simulated packings of frictionless, deformable disks. Our demonstration that a statistical ensemble can be constructed through the identification of conserved quantities other than energy is a new approach that is expected to open up avenues for statistical descriptions of other non-equilibrium systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا