No Arabic abstract
Several works based on Generative Adversarial Networks (GAN) have been recently proposed to predict a set of medical images from a single modality (e.g, FLAIR MRI from T1 MRI). However, such frameworks are primarily designed to operate on images, limiting their generalizability to non-Euclidean geometric data such as brain graphs. While a growing number of connectomic studies has demonstrated the promise of including brain graphs for diagnosing neurological disorders, no geometric deep learning work was designed for multiple target brain graphs prediction from a source brain graph. Despite the momentum the field of graph generation has gained in the last two years, existing works have two critical drawbacks. First, the bulk of such works aims to learn one model for each target domain to generate from a source domain. Thus, they have a limited scalability in jointly predicting multiple target domains. Second, they merely consider the global topological scale of a graph (i.e., graph connectivity structure) and overlook the local topology at the node scale of a graph (e.g., how central a node is in the graph). To meet these challenges, we introduce MultiGraphGAN architecture, which not only predicts multiple brain graphs from a single brain graph but also preserves the topological structure of each target graph to predict. Its three core contributions lie in: (i) designing a graph adversarial auto-encoder for jointly predicting brain graphs from a single one, (ii) handling the mode collapse problem of GAN by clustering the encoded source graphs and proposing a cluster-specific decoder, (iii) introducing a topological loss to force the reconstruction of topologically sound target brain graphs. Our MultiGraphGAN significantly outperformed its variants thereby showing its great potential in multi-view brain graph generation from a single graph.
Brain graphs (i.e, connectomes) constructed from medical scans such as magnetic resonance imaging (MRI) have become increasingly important tools to characterize the abnormal changes in the human brain. Due to the high acquisition cost and processing time of multimodal MRI, existing deep learning frameworks based on Generative Adversarial Network (GAN) focused on predicting the missing multimodal medical images from a few existing modalities. While brain graphs help better understand how a particular disorder can change the connectional facets of the brain, synthesizing a target brain multigraph (i.e, multiple brain graphs) from a single source brain graph is strikingly lacking. Additionally, existing graph generation works mainly learn one model for each target domain which limits their scalability in jointly predicting multiple target domains. Besides, while they consider the global topological scale of a graph (i.e., graph connectivity structure), they overlook the local topology at the node scale (e.g., how central a node is in the graph). To address these limitations, we introduce topology-aware graph GAN architecture (topoGAN), which jointly predicts multiple brain graphs from a single brain graph while preserving the topological structure of each target graph. Its three key innovations are: (i) designing a novel graph adversarial auto-encoder for predicting multiple brain graphs from a single one, (ii) clustering the encoded source graphs in order to handle the mode collapse issue of GAN and proposing a cluster-specific decoder, (iii) introducing a topological loss to force the prediction of topologically sound target brain graphs. The experimental results using five target domains demonstrated the outperformance of our method in brain multigraph prediction from a single graph in comparison with baseline approaches.
Automatic evaluation of the goodness of Generative Adversarial Networks (GANs) has been a challenge for the field of machine learning. In this work, we propose a distance complementary to existing measures: Topology Distance (TD), the main idea behind which is to compare the geometric and topological features of the latent manifold of real data with those of generated data. More specifically, we build Vietoris-Rips complex on image features, and define TD based on the differences in persistent-homology groups of the two manifolds. We compare TD with the most commonly used and relevant measures in the field, including Inception Score (IS), Frechet Inception Distance (FID), Kernel Inception Distance (KID) and Geometry Score (GS), in a range of experiments on various datasets. We demonstrate the unique advantage and superiority of our proposed approach over the aforementioned metrics. A combination of our empirical results and the theoretical argument we propose in favour of TD, strongly supports the claim that TD is a powerful candidate metric that researchers can employ when aiming to automatically evaluate the goodness of GANs learning.
With the increasing popularity of graph-based learning, graph neural networks (GNNs) emerge as the essential tool for gaining insights from graphs. However, unlike the conventional CNNs that have been extensively explored and exhaustively tested, people are still worrying about the GNNs robustness under the critical settings, such as financial services. The main reason is that existing GNNs usually serve as a black-box in predicting and do not provide the uncertainty on the predictions. On the other side, the recent advancement of Bayesian deep learning on CNNs has demonstrated its success of quantifying and explaining such uncertainties to fortify CNN models. Motivated by these observations, we propose UAG, the first systematic solution to defend adversarial attacks on GNNs through identifying and exploiting hierarchical uncertainties in GNNs. UAG develops a Bayesian Uncertainty Technique (BUT) to explicitly capture uncertainties in GNNs and further employs an Uncertainty-aware Attention Technique (UAT) to defend adversarial attacks on GNNs. Intensive experiments show that our proposed defense approach outperforms the state-of-the-art solutions by a significant margin.
Brain image analysis has advanced substantially in recent years with the proliferation of neuroimaging datasets acquired at different resolutions. While research on brain image super-resolution has undergone a rapid development in the recent years, brain graph super-resolution is still poorly investigated because of the complex nature of non-Euclidean graph data. In this paper, we propose the first-ever deep graph super-resolution (GSR) framework that attempts to automatically generate high-resolution (HR) brain graphs with N nodes (i.e., anatomical regions of interest (ROIs)) from low-resolution (LR) graphs with N nodes where N < N. First, we formalize our GSR problem as a node feature embedding learning task. Once the HR nodes embeddings are learned, the pairwise connectivity strength between brain ROIs can be derived through an aggregation rule based on a novel Graph U-Net architecture. While typically the Graph U-Net is a node-focused architecture where graph embedding depends mainly on node attributes, we propose a graph-focused architecture where the node feature embedding is based on the graph topology. Second, inspired by graph spectral theory, we break the symmetry of the U-Net architecture by super-resolving the low-resolution brain graph structure and node content with a GSR layer and two graph convolutional network layers to further learn the node embeddings in the HR graph. Third, to handle the domain shift between the ground-truth and the predicted HR brain graphs, we incorporate adversarial regularization to align their respective distributions. Our proposed AGSR-Net framework outperformed its variants for predicting high-resolution functional brain graphs from low-resolution ones. Our AGSR-Net code is available on GitHub at https://github.com/basiralab/AGSR-Net.
In medical applications, the same anatomical structures may be observed in multiple modalities despite the different image characteristics. Currently, most deep models for multimodal segmentation rely on paired registered images. However, multimodal paired registered images are difficult to obtain in many cases. Therefore, developing a model that can segment the target objects from different modalities with unpaired images is significant for many clinical applications. In this work, we propose a novel two-stream translation and segmentation unified attentional generative adversarial network (UAGAN), which can perform any-to-any image modality translation and segment the target objects simultaneously in the case where two or more modalities are available. The translation stream is used to capture modality-invariant features of the target anatomical structures. In addition, to focus on segmentation-related features, we add attentional blocks to extract valuable features from the translation stream. Experiments on three-modality brain tumor segmentation indicate that UAGAN outperforms the existing methods in most cases.