Do you want to publish a course? Click here

Forecasting elections results via the voter model with stubborn nodes

55   0   0.0 ( 0 )
 Added by Antoine Vendeville
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper we propose a novel method to forecast the result of elections using only official results of previous ones. It is based on the voter model with stubborn nodes and uses theoretical results developed in a previous work of ours. We look at popular vote shares for the Conservative and Labour parties in the UK and the Republican and Democrat parties in the US. We are able to perform time-evolving estimates of the model parameters and use these to forecast the vote shares for each party in any election. We obtain a mean absolute error of 4.74%. As a side product, our parameters estimates provide meaningful insight on the political landscape, informing us on the proportion of voters that are strong supporters of each of the considered parties.



rate research

Read More

In the voter model, each node of a graph has an opinion, and in every round each node chooses independently a random neighbour and adopts its opinion. We are interested in the consensus time, which is the first point in time where all nodes have the same opinion. We consider dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise to the graph sequence $G_1, G_2, dots $, where we assume that $G_i$ has conductance at least $phi_i$. We assume that the degrees of nodes dont change over time as one can show that the consensus time can become super-exponential otherwise. In the case of a sequence of $d$-regular graphs, we obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results improve the state of the art. Here we show that the expected number of rounds until all nodes have the same opinion is bounded by $O(m/(d_{min} cdot phi))$, for any graph with $m$ edges, conductance $phi$, and degrees at least $d_{min}$. In addition, we consider a biased dynamic voter model, where each opinion $i$ is associated with a probability $P_i$, and when a node chooses a neighbour with that opinion, it adopts opinion $i$ with probability $P_i$ (otherwise the node keeps its current opinion). We show for any regular dynamic graph, that if there is an $epsilon>0$ difference between the highest and second highest opinion probabilities, and at least $Omega(log n)$ nodes have initially the opinion with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on the convergences time, which becomes $O(log n/phi)$ for static graphs.
We consider optimizing the placement of stubborn agents in a social network in order to maximally influence the population. We assume individuals in a directed social network each have a latent opinion that evolves over time in response to social media posts by their neighbors. The individuals randomly communicate noi
Previous work on voter control, which refers to situations where a chair seeks to change the outcome of an election by deleting, adding, or partitioning voters, takes for granted that the chair knows all the voters preferences and that all votes are cast simultaneously. However, elections are often held sequentially and the chair thus knows only the previously cast votes and not the future ones, yet needs to decide instantaneously which control action to take. We introduce a framework that models online voter control in sequential elections. We show that the related problems can be much harder than in the standard (non-online) case: For certain election systems, even with efficient winner problems, online control by deleting, adding, or partitioning voters is PSPACE-complete, even if there are only two candidates. In addition, we obtain (by a new characterization of coNP in terms of weight-bounded alternating Turing machines) completeness for coNP in the deleting/adding cases with a bounded deletion/addition limit, and we obtain completeness for NP in the partition cases with an additional restriction. We also show that for plurality, online control by deleting or adding voters is in P, and for partitioning voters is coNP-hard.
81 - Wenqi Wei , Qi Zhang , Ling Liu 2020
Bitcoin and its decentralized computing paradigm for digital currency trading are one of the most disruptive technology in the 21st century. This paper presents a novel approach to developing a Bitcoin transaction forecast model, DLForecast, by leveraging deep neural networks for learning Bitcoin transaction network representations. DLForecast makes three original contributions. First, we explore three interesting properties between Bitcoin transaction accounts: topological connectivity pattern of Bitcoin accounts, transaction amount pattern, and transaction dynamics. Second, we construct a time-decaying reachability graph and a time-decaying transaction pattern graph, aiming at capturing different types of spatial-temporal Bitcoin transaction patterns. Third, we employ node embedding on both graphs and develop a Bitcoin transaction forecasting system between user accounts based on historical transactions with built-in time-decaying factor. To maintain an effective transaction forecasting performance, we leverage the multiplicative model update (MMU) ensemble to combine prediction models built on different transaction features extracted from each corresponding Bitcoin transaction graph. Evaluated on real-world Bitcoin transaction data, we show that our spatial-temporal forecasting model is efficient with fast runtime and effective with forecasting accuracy over 60% and improves the prediction performance by 50% when compared to forecasting model built on the static graph baseline.
Accurately analyzing graph properties of social networks is a challenging task because of access limitations to the graph data. To address this challenge, several algorithms to obtain unbiased estimates of properties from few samples via a random walk have been studied. However, existing algorithms do not consider private nodes who hide their neighbors in real social networks, leading to some practical problems. Here we design random walk-based algorithms to accurately estimate properties without any problems caused by private nodes. First, we design a random walk-based sampling algorithm that comprises the neighbor selection to obtain samples having the Markov property and the calculation of weights for each sample to correct the sampling bias. Further, for two graph property estimators, we propose the weighting methods to reduce not only the sampling bias but also estimation errors due to private nodes. The proposed algorithms improve the estimation accuracy of the existing algorithms by up to 92.6% on real-world datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا