Do you want to publish a course? Click here

From Ants to Fishing Vessels: A Simple Model for Herding and Exploitation of Finite Resources

104   0   0.0 ( 0 )
 Added by Jos\\'e Moran
 Publication date 2020
  fields Physics Biology
and research's language is English




Ask ChatGPT about the research

We analyse the dynamics of fishing vessels with different home ports in an area where these vessels, in choosing where to fish, are influenced by their own experience in the past and by their current observation of the locations of other vessels in the fleet. Empirical data from the boats near Ancona and Pescara shows stylized statistical properties that are reminiscent of Kirman and Follmers ant recruitment model, although with two ant colonies represented by the two ports. From the point of view of a fisherman, the two fishing areas are not equally attractive, and he tends to prefer the one closer to where he is based. This piece of evidence led us to extend the original ants model to a situation with two asymmetric zones and finite resources. We show that, in the mean-field regime, our model exhibits the same properties as the empirical data. We obtain a phase diagram that separates high and low herding regimes, but also fish population extinction. Our analysis has interesting policy implications for the ecology of fishing areas. It also suggests that herding behaviour here, just as in financial markets, will lead to significant fluctuations in the amount of fish landed, as the boat concentration on one area at a given point in time will diminish the overall catch, such loss not being compensated by the reproduction of fish in the other area. In other terms, individually rational behaviour will not lead to collectively optimal results.



rate research

Read More

We study a simple reaction-diffusion population model [proposed by A. Windus and H. J. Jensen, J. Phys. A: Math. Theor. 40, 2287 (2007)] on scale-free networks. In the case of fully random diffusion, the network topology cannot affect the critical death rate, whereas the heterogeneous connectivity can cause smaller steady population density and critical population density. In the case of modified diffusion, we obtain a larger critical death rate and steady population density, at the meanwhile, lower critical population density, which is good for the survival of species. The results were obtained using a mean-field-like framework and were confirmed by computer simulations.
A generalisation of the Susceptible-Infectious model is made to include a time-dependent transmission rate, which leads to a close analytical expression in terms of a logistic function. The solution can be applied to any continuous function chosen to describe the evolution of the transmission rate with time. Taking inspiration from real data of the Covid-19, for the case of cumulative confirmed positives and deaths, we propose an exponentially decaying transmission rate with two free parameters, one for its initial amplitude and another one for its decaying rate. The resultant time-dependent SI model, which under extra conditions recovers the standard Gompertz functional form, is then compared with data from selected countries and its parameters fit using Bayesian inference. We make predictions about the asymptotic number of confirmed positives and deaths, and discuss the possible evolution of the disease in each country in terms of our parametrisation of the transmission rate.
We formulate a generalized susceptible exposed infectious recovered (SEIR) model on a graph, describing the population dynamics of an open crowded place with an arbitrary topology. As a sample calculation, we discuss three simple cases, both analytically, and numerically, by means of a cellular automata simulation of the individual dynamics in the system. As a result, we provide the infection ratio in the system as a function of controllable parameters, which allows for quantifying how acting on the human behavior may effectively lower the disease spread throughout the system.
We show how the approach to equilibrium in Kirmans ants model can be fully characterized in terms of the spectrum of a Schrodinger equation with a Poschl-Teller ($tan^2$) potential. Among other interesting properties, we have found that in the bimodal phase where ants visit mostly one food site at a time, the switch time between the two sources only depends on the ``spontaneous conversion rate and not on the recruitment rate. More complicated correlation functions can be computed exactly, and involve higher and higher eigenvalues and eigenfunctions of the Schrodinger operator, which can be expressed in terms of hypergeometric functions.
67 - Zezhun Chen 2020
In this paper, we propose a continuous-time stochastic intensity model, namely, two-phase dynamic contagion process(2P-DCP), for modelling the epidemic contagion of COVID-19 and investigating the lockdown effect based on the dynamic contagion model introduced by Dassios and Zhao (2011). It allows randomness to the infectivity of individuals rather than a constant reproduction number as assumed by standard models. Key epidemiological quantities, such as the distribution of final epidemic size and expected epidemic duration, are derived and estimated based on real data for various regions and countries. The associated time lag of the effect of intervention in each country or region is estimated. Our results are consistent with the incubation time of COVID-19 found by recent medical study. We demonstrate that our model could potentially be a valuable tool in the modeling of COVID-19. More importantly, the proposed model of 2P-DCP could also be used as an important tool in epidemiological modelling as this type of contagion models with very simple structures is adequate to describe the evolution of regional epidemic and worldwide pandemic.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا