Do you want to publish a course? Click here

Model of Boson and Fermion Particle Masses

67   0   0.0 ( 0 )
 Added by John W. Moffat
 Publication date 2020
  fields
and research's language is English
 Authors J. W. Moffat




Ask ChatGPT about the research

The boson and fermion particle masses are calculated in a finite quantum field theory. The field theory satisfies Poincare invariance, unitarity and microscopic causality, and all loop graphs are finite to all orders of perturbation theory. The infinite derivative nonlocal field interactions are regularized with a mass (length) scale parameter $Lambda_i$. The $W$, $Z$ and Higgs boson masses are calculated from finite one-loop self-energy graphs. The $W^{pm}$ mass is predicted to be $M_W=80.05$ GeV, and the higher order radiative corrections to the Higgs boson mass $m_H=125$ GeV are damped out above the regulating mass scale parameter $Lambda_H=1.57$ TeV. The three generations of quark and lepton masses are calculated from finite one-loop self-interactions, and there is an exponential spacing in mass between the quarks and leptons.

rate research

Read More

We compute the magnetic field-induced modifications to the boson self-coupling and the boson-fermion coupling, in the static limit, using an effective model of QCD, the linear sigma model with quarks. The former is computed for arbitrary field strengths as well as using the strong field approximation. The latter is obtained in the strong field limit. The arbitrary field result for the boson self-coupling depends on the ultraviolet renormalization scale and this dependence cannot be removed by a simple vacuum subtraction. Using the strong field result as a guide, we find the appropriate choice for this scale and discuss the physical implications. The boson-fermion coupling depends on the Schwingers phase and we show how this phase can be treated consistently in such a way that the magnetic field induced vertex modification is both gauge invariant and can be written with an explicit factor corresponding to energy-momentum conservation for the external particles. Both couplings show a modest decrease with the field strength.
Minimal Flavour Violation (MFV) postulates that the only source of flavour changing neutral currents and CP violation, as in the Standard Model, is the CKM matrix. However it does not address the origin of fermion masses and mixing and models that do usually have a structure that goes well beyond the MFV framework. In this paper we compare the MFV predictions with those obtained in models based on spontaneously broken (horizontal) family symmetries, both Abelian and non-Abelian. The generic suppression of flavour changing processes in these models turns out to be weaker than in the MFV hypothesis. Despite this, in the supersymmetric case, the suppression may still be consistent with a solution to the hierarchy problem, with masses of superpartners below 1 TeV. A comparison of FCNC and CP violation in processes involving a variety of different family quantum numbers should be able to distinguish between various family symmetry models and models satisfying the MFV hypothesis.
122 - G. K. Leontaris 2009
String instanton Yukawa corrections from Euclidean D-branes are investigated in an effective Standard Model theory obtained from the minimal U(3)xU(2)xU(1) D-brane configuration. In the case of the minimal chiral and Higgs spectrum, it is found that superpotential contributions are induced by string instantons for the perturbatively forbidden entries of the up and down quark mass matrices. Analogous non-perturbative effects generate heavy Majorana neutrino masses and a Dirac neutrino texture with factorizable Yukawa couplings. For this latter case, a specific example is worked out where it is shown how this texture can reconcile the neutrino data.
208 - K.C. Chou , Y.L. Wu 2000
CP violation, fermion masses and mixing angles including that of neutrinos are studied in an SUSY SO(10)$times Delta (48)times$ U(1) model. The nonabelian SU(3) discrete family symmetry $Delta(48)$ associated with a simple scheme of U(1) charge assignment on various fields concerned in superpotential leads to unique Yukawa coupling matrices with zero textures. Thirteen parameters involving masses and mixing angles in the quark and charged lepton sector are successfully predicted by only four parameters. The masses and mixing angles for the neutrino sector could also be predicted by constructing an appropriate heavy Majorana neutrino mass matrix without involving new parameters. It is found that the atmospheric neutrino deficit, the mass limit put by hot dark matter and the LSND $bar{ u}_{mu} to bar{ u}_{e}$ events may simultaneously be explained, but solar neutrino puzzle can be solved only by introducing a sterile neutrino. An additional parameter is added to obtain the mass and mixing of the sterile neutrino. The hadronic parameters $B_{K}$ and $f_{B}sqrt{B}$ are extracted from the observed $K^{0}$-$bar{K}^{0}$ and $B^{0}$-$bar{B}^{0}$ mixings respectively. The direct CP violation ($epsilon/epsilon$) in kaon decays and the three angles $alpha$, $beta$ and $gamma$ of the unitarity triangle in the CKM matrix are also presented. More precise measurements of $alpha_{s}(M_{Z})$, $|V_{cb}|$, $|V_{ub}/V_{cb}|$, $m_{t}$, as well as various CP violation and neutrino oscillation experiments will provide an important test for the present model and guide us to a more fundamental theory.
We study a supersymmetric extension of the Standard Model based on discrete A4xZ3xZ4 flavor symmetry. We obtain quark mixing angles as well as a realistic fermion mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking of A4. The top quark Yukawa interaction is present at the renormalizable level in the superpotential while all the other Yukawa interactions arise only at higher orders. We study the Higgs potential and show that it can potentially solve the so called vacuum alignment problem. The leading order predictions are not spoiled by subleading corrections.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا