No Arabic abstract
Recommender systems should adapt to user interests as the latter evolve. A prevalent cause for the evolution of user interests is the influence of their social circle. In general, when the interests are not known, online algorithms that explore the recommendation space while also exploiting observed preferences are preferable. We present online recommendation algorithms rooted in the linear multi-armed bandit literature. Our bandit algorithms are tailored precisely to recommendation scenarios where user interests evolve under social influence. In particular, we show that our adaptations of the classic LinREL and Thompson Sampling algorithms maintain the same asymptotic regret bounds as in the non-social case. We validate our approach experimentally using both synthetic and real datasets.
We study the problem of online influence maximization in social networks. In this problem, a learner aims to identify the set of best influencers in a network by interacting with it, i.e., repeatedly selecting seed nodes and observing activation feedback in the network. We capitalize on an important property of the influence maximization problem named network assortativity, which is ignored by most existing works in online influence maximization. To realize network assortativity, we factorize the activation probability on the edges into latent factors on the corresponding nodes, including influence factor on the giving nodes and susceptibility factor on the receiving nodes. We propose an upper confidence bound based online learning solution to estimate the latent factors, and therefore the activation probabilities. Considerable regret reduction is achieved by our factorization based online influence maximization algorithm. And extensive empirical evaluations on two real-world networks showed the effectiveness of our proposed solution.
GraphQL is a query language for APIs and a runtime for executing those queries, fetching the requested data from existing microservices, REST APIs, databases, or other sources. Its expressiveness and its flexibility have made it an attractive candidate for API providers in many industries, especially through the web. A major drawback to blindly servicing a clients query in GraphQL is that the cost of a query can be unexpectedly large, creating computation and resource overload for the provider, and API rate-limit overages and infrastructure overload for the client. To mitigate these drawbacks, it is necessary to efficiently estimate the cost of a query before executing it. Estimating query cost is challenging, because GraphQL queries have a nested structure, GraphQL APIs follow different design conventions, and the underlying data sources are hidden. Estimates based on worst-case static query analysis have had limited success because they tend to grossly overestimate cost. We propose a machine-learning approach to efficiently and accurately estimate the query cost. We also demonstrate the power of this approach by testing it on query-response data from publicly available commercial APIs. Our framework is efficient and predicts query costs with high accuracy, consistently outperforming the static analysis by a large margin.
We study the effect of persistence of engagement on learning in a stochastic multi-armed bandit setting. In advertising and recommendation systems, repetition effect includes a wear-in period, where the users propensity to reward the platform via a click or purchase depends on how frequently they see the recommendation in the recent past. It also includes a counteracting wear-out period, where the users propensity to respond positively is dampened if the recommendation was shown too many times recently. Priming effect can be naturally modelled as a temporal constraint on the strategy space, since the reward for the current action depends on historical actions taken by the platform. We provide novel algorithms that achieves sublinear regret in time and the relevant wear-in/wear-out parameters. The effect of priming on the regret upper bound is also additive, and we get back a guarantee that matches popular algorithms such as the UCB1 and Thompson sampling when there is no priming effect. Our work complements recent work on modeling time varying rewards, delays and corruptions in bandits, and extends the usage of rich behavior models in sequential decision making settings.
We propose a new end-to-end method for extending a Knowledge Graph (KG) from tables. Existing techniques tend to interpret tables by focusing on information that is already in the KG, and therefore tend to extract many redundant facts. Our method aims to find more novel facts. We introduce a new technique for table interpretation based on a scalable graphical model using entity similarities. Our method further disambiguates cell values using KG embeddings as additional ranking method. Other distinctive features are the lack of assumptions about the underlying KG and the enabling of a fine-grained tuning of the precision/recall trade-off of extracted facts. Our experiments show that our approach has a higher recall during the interpretation process than the state-of-the-art, and is more resistant against the bias observed in extracting mostly redundant facts since it produces more novel extractions.
Bandit algorithms have various application in safety-critical systems, where it is important to respect the system constraints that rely on the bandits unknown parameters at every round. In this paper, we formulate a linear stochastic multi-armed bandit problem with safety constraints that depend (linearly) on an unknown parameter vector. As such, the learner is unable to identify all safe actions and must act conservatively in ensuring that her actions satisfy the safety constraint at all rounds (at least with high probability). For these bandits, we propose a new UCB-based algorithm called Safe-LUCB, which includes necessary modifications to respect safety constraints. The algorithm has two phases. During the pure exploration phase the learner chooses her actions at random from a restricted set of safe actions with the goal of learning a good approximation of the entire unknown safe set. Once this goal is achieved, the algorithm begins a safe exploration-exploitation phase where the learner gradually expands their estimate of the set of safe actions while controlling the growth of regret. We provide a general regret bound for the algorithm, as well as a problem dependent bound that is connected to the location of the optimal action within the safe set. We then propose a modified heuristic that exploits our problem dependent analysis to improve the regret.