Do you want to publish a course? Click here

Random Field Ising Model and Parisi-Sourlas Supersymmetry II. Renormalization Group

91   0   0.0 ( 0 )
 Added by Emilio Trevisani
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric fixed point (Cardy, 1985), we look for interactions which may destabilize the SUSY RG flow and lead to the loss of dimensional reduction. This problem is reduced to studying the anomalous dimensions of leaders -- lowest dimension parts of $S_n$-invariant perturbations in the Cardy basis. Leader operators are classified as non-susy-writable, susy-writable or susy-null depending on their symmetry. Susy-writable leaders are additionally classified as belonging to superprimary multiplets transforming in particular $textrm{OSp}(d | 2)$ representations. We enumerate all leaders up to 6d dimension $Delta = 12$, and compute their perturbative anomalous dimensions (up to two loops). We thus identify two perturbations (with susy-null and non-susy-writable leaders) becoming relevant below a critical dimension $d_c approx 4.2$ - $4.7$. This supports the scenario that the SUSY fixed point exists for all $3 < d leq 6$, but becomes unstable for $d < d_c$.



rate research

Read More

Quenched disorder is very important but notoriously hard. In 1979, Parisi and Sourlas proposed an interesting and powerful conjecture about the infrared fixed points with random field type of disorder: such fixed points should possess an unusual supersymmetry, by which they reduce in two less spatial dimensions to usual non-supersymmetric non-disordered fixed points. This conjecture however is known to fail in some simple cases, but there is no consensus on why this happens. In this paper we give new non-perturbative arguments for dimensional reduction. We recast the problem in the language of Conformal Field Theory (CFT). We then exhibit a map of operators and correlation functions from Parisi-Sourlas supersymmetric CFT in $d$ dimensions to a $(d-2)$-dimensional ordinary CFT. The reduced theory is local, i.e. it has a local conserved stress tensor operator. As required by reduction, we show a perfect match between superconformal blocks and the usual conformal blocks in two dimensions lower. This also leads to a new relation between conformal blocks across dimensions. This paper concerns the second half of the Parisi-Sourlas conjecture, while the first half (existence of a supersymmetric fixed point) will be examined in a companion work.
We provide a non-trivial test of supersymmetry in the random-field Ising model at five spatial dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry relates correlation functions in a D-dimensional disordered system with some other correlation functions in a D-2 clean system. We first show how to check these relationships in a finite-size scaling calculation, and then perform a high-accuracy test. While the supersymmetric predictions are satisfied even to our high-accuracy at D=5, they fail to describe our results at D=4.
168 - N.G. Fytas , A. Malakis 2008
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation lengths exponent, in agreement with previous estimates from ground-state studies of the model.
We employ an adaptation of a strong-disorder renormalization-group technique in order to analyze the ferro-paramagnetic quantum phase transition of Ising chains with aperiodic but deterministic couplings under the action of a transverse field. In the presence of marginal or relevant geometric fluctuations induced by aperiodicity, for which the critical behavior is expected to depart from the Onsager universality class, we derive analytical and asymptotically exact expressions for various critical exponents (including the correlation-length and the magnetization exponents, which are not easily obtainable by other methods), and shed light onto the nature of the ground state structures in the neighborhood of the critical point. The main results obtained by this approach are confirmed by finite-size scaling analyses of numerical calculations based on the free-fermion method.
Two numerical strategies based on the Wang-Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal ($pm h$) random-field Ising model at the strong disorder regime. We consider simple cubic lattices with linear sizes in the range $L=4-32$ and simulate the system for two values of the disorder strength: $h=2$ and $h=2.25$. The nature of the transition is elucidated by applying the Lee-Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random-field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا