Do you want to publish a course? Click here

First-order transition features of the 3D bimodal random-field Ising model

169   0   0.0 ( 0 )
 Added by Nikolaos Fytas G.
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two numerical strategies based on the Wang-Landau and Lee entropic sampling schemes are implemented to investigate the first-order transition features of the 3D bimodal ($pm h$) random-field Ising model at the strong disorder regime. We consider simple cubic lattices with linear sizes in the range $L=4-32$ and simulate the system for two values of the disorder strength: $h=2$ and $h=2.25$. The nature of the transition is elucidated by applying the Lee-Kosterlitz free-energy barrier method. Our results indicate that, despite the strong first-order-like characteristics, the transition remains continuous, in disagreement with the early mean-field theory prediction of a tricritical point at high values of the random-field.



rate research

Read More

161 - N.G. Fytas , A. Malakis 2008
The one-parametric Wang-Landau (WL) method is implemented together with an extrapolation scheme to yield approximations of the two-dimensional (exchange-energy, field-energy) density of states (DOS) of the 3D bimodal random-field Ising model (RFIM). The present approach generalizes our earlier WL implementations, by handling the final stage of the WL process as an entropic sampling scheme, appropriate for the recording of the required two-parametric histograms. We test the accuracy of the proposed extrapolation scheme and then apply it to study the size-shift behavior of the phase diagram of the 3D bimodal RFIM. We present a finite-size converging approach and a well-behaved sequence of estimates for the critical disorder strength. Their asymptotic shift-behavior yields the critical disorder strength and the associated correlation lengths exponent, in agreement with previous estimates from ground-state studies of the model.
We present a complementary estimation of the critical exponent $alpha$ of the specific heat of the 5D random-field Ising model from zero-temperature numerical simulations. Our result $alpha = 0.12(2)$ is consistent with the estimation coming from the modified hyperscaling relation and provides additional evidence in favor of the recently proposed restoration of dimensional reduction in the random-field Ising model at $D = 5$.
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of finite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
We provide a non-trivial test of supersymmetry in the random-field Ising model at five spatial dimensions, by means of extensive zero-temperature numerical simulations. Indeed, supersymmetry relates correlation functions in a D-dimensional disordered system with some other correlation functions in a D-2 clean system. We first show how to check these relationships in a finite-size scaling calculation, and then perform a high-accuracy test. While the supersymmetric predictions are satisfied even to our high-accuracy at D=5, they fail to describe our results at D=4.
We revisit perturbative RG analysis in the replicated Landau-Ginzburg description of the Random Field Ising Model near the upper critical dimension 6. Working in a field basis with manifest vicinity to a weakly-coupled Parisi-Sourlas supersymmetric fixed point (Cardy, 1985), we look for interactions which may destabilize the SUSY RG flow and lead to the loss of dimensional reduction. This problem is reduced to studying the anomalous dimensions of leaders -- lowest dimension parts of $S_n$-invariant perturbations in the Cardy basis. Leader operators are classified as non-susy-writable, susy-writable or susy-null depending on their symmetry. Susy-writable leaders are additionally classified as belonging to superprimary multiplets transforming in particular $textrm{OSp}(d | 2)$ representations. We enumerate all leaders up to 6d dimension $Delta = 12$, and compute their perturbative anomalous dimensions (up to two loops). We thus identify two perturbations (with susy-null and non-susy-writable leaders) becoming relevant below a critical dimension $d_c approx 4.2$ - $4.7$. This supports the scenario that the SUSY fixed point exists for all $3 < d leq 6$, but becomes unstable for $d < d_c$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا