Do you want to publish a course? Click here

Positive univariate trace polynomials

169   0   0.0 ( 0 )
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

A univariate trace polynomial is a polynomial in a variable x and formal trace symbols Tr(x^j). Such an expression can be naturally evaluated on matrices, where the trace symbols are evaluated as normalized traces. This paper addresses global and constrained positivity of univariate trace polynomials on symmetric matrices of all finite sizes. A tracial analog of Artins solution to Hilberts 17th problem is given: a positive semidefinite univariate trace polynomial is a quotient of sums of products of squares and traces of squares of trace polynomials.



rate research

Read More

The usual univariate interpolation problem of finding a monic polynomial f of degree n that interpolates n given values is well understood. This paper studies a variant where f is required to be composite, say, a composition of two polynomials of degrees d and e, respectively, with de=n, and therefore d+e-1 given values. Some special cases are easy to solve, and for the general case, we construct a homotopy between it and a special case. We compute a geometric solution of the algebraic curve presenting this homotopy, and this also provides an answer to the interpolation task. The computing time is polynomial in the geometric data, like the degree, of this curve. A consequence is that for almost all inputs, a decomposable interpolation polynomial exists.
Univariate fractions can be transformed to mixed fractions in the equational theory of meadows of characteristic zero.
We estimate the density of tubes around the algebraic variety of decomposable univariate polynomials over the real and the complex numbers.
In this paper, we first present simple proofs of Chois results [4], then we give a short alternative proof for Fiedler and Markhams inequality [6]. We also obtain additional matrix inequalities related to partial determinants.
We consider the set of monic real univariate polynomials of a given degree $d$ with non-vanishing coefficients, with given signs of the coefficients and with given quantities of their positive and negative roots (all roots are distinct). For $d=6$ and for signs of the coefficients $(+,-,+,+,+,-,+)$, we prove that the set of such polynomials having two positive, two negative and two complex conjugate roots, is not connected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا