COVID-19 pandemic represents an unprecedented global health crisis in the last 100 years. Its economic, social and health impact continues to grow and is likely to end up as one of the worst global disasters since the 1918 pandemic and the World Wars. Mathematical models have played an important role in the ongoing crisis; they have been used to inform public policies and have been instrumental in many of the social distancing measures that were instituted worldwide. In this article we review some of the important mathematical models used to support the ongoing planning and response efforts. These models differ in their use, their mathematical form and their scope.
Several analytical models have been used in this work to describe the evolution of death cases arising from coronavirus (COVID-19). The Death or `D model is a simplified version of the SIR (susceptible-infected-recovered) model, which assumes no recovery over time, and allows for the transmission-dynamics equations to be solved analytically. The D-model can be extended to describe various focuses of infection, which may account for the original pandemic (D1), the lockdown (D2) and other effects (Dn). The evolution of the COVID-19 pandemic in several countries (China, Spain, Italy, France, UK, Iran, USA and Germany) shows a similar behavior in concord with the D-model trend, characterized by a rapid increase of death cases followed by a slow decline, which are affected by the earliness and efficiency of the lockdown effect. These results are in agreement with more accurate calculations using the extended SIR model with a parametrized solution and more sophisticated Monte Carlo grid simulations, which predict similar trends and indicate a common evolution of the pandemic with universal parameters.
We studied the COVID-19 pandemic evolution in selected African countries. For each country considered, we modeled simultaneously the data of the active, recovered and death cases. In this study, we used a year of data since the first cases were reported. We estimated the time-dependent basic reproduction numbers, $R_0$, and the fractions of infected but unaffected populations, to offer insights into containment and vaccine strategies in African countries. We found that $R_0leq 4$ at the start of the pandemic but has since fallen to $R_0 sim 1$. The unaffected fractions of the populations studied vary between $1-10$% of the recovered cases.
COVID-19--a viral infectious disease--has quickly emerged as a global pandemic infecting millions of people with a significant number of deaths across the globe. The symptoms of this disease vary widely. Depending on the symptoms an infected person is broadly classified into two categories namely, asymptomatic and symptomatic. Asymptomatic individuals display mild or no symptoms but continue to transmit the infection to otherwise healthy individuals. This particular aspect of asymptomatic infection poses a major obstacle in managing and controlling the transmission of the infectious disease. In this paper, we attempt to mathematically model the spread of COVID-19 in India under various intervention strategies. We consider SEIR type epidemiological models, incorporated with India specific social contact matrix representing contact structures among different age groups of the population. Impact of various factors such as presence of asymptotic individuals, lockdown strategies, social distancing practices, quarantine, and hospitalization on the disease transmission is extensively studied. Numerical simulation of our model is matched with the real COVID-19 data of India till May 15, 2020 for the purpose of estimating the model parameters. Our model with zone-wise lockdown is seen to give a decent prediction for July 20, 2020.
Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R_0 through specific disease control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R_0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development.
The current outbreak is known as Coronavirus Disease or COVID-19 caused by the virus SAR-COV-2 which continues to wreak havoc across the globe. The World Health Organization (WHO) has declared the outbreak a Public Health Emergency of International Concern. In Pakistan, the spread of the virus is on the rise with the number of infected people and causalities rapidly increasing. In the absence of proper vaccination and treatment, to reduce the number of infections and casualties, the only option so far is to educate people regarding preventive measures and to enforce countrywide lock-down. Any strategy about the preventive measures needs to be based upon detailed analysis of the COVID-19 outbreak and accurate scientific predictions. In this paper, we conduct mathematical and numerical analysis to come up with reliable and accurate predictions of the outbreak in Pakistan. The time-dependent Susceptible-Infected-Recovered (SIR) model is used to fit the data and provide future predictions. The turning point of the peak of the pandemic is defined as the day when the transmission rate becomes less than the recovering rate. We have predicted that the outbreak will reach its maximum peak occurring from late May to 9 June with unrecovered number of Infectives in the range 20000-47000 and the cumulative number of infected cases in the range of 57500-153100. The number of Infectives will remain at the lower end in the lock-down scenario but can rapidly double or triple if the spread of the epidemic is not curtailed and localized. The uncertainty on single day projection in our analysis after April 15 is found to be within 5%.