No Arabic abstract
This paper applies operads and functorial semantics to address the problem of failure diagnosis in complex systems. We start with a concrete example, developing a hierarchical interaction model for the Length Scale Interferometer, a high-precision measurement system operated by the US National Institute of Standards and Technology. The model is expressed in terms of combinatorial/diagrammatic structures called port-graphs, and we explain how to extract an operad LSI from a collection of these diagrams. Next we show how functors to the operad of probabilities organize and constrain the relative probabilities of component failure in the system. Finally, we show how to extend the analysis from general component failure to specific failure modes.
We present a generic framework that facilitates object level reasoning with logics that are encoded within the Higher Order Logic theorem proving environment of HOL Light. This involves proving statements in any logic using intuitive forward and backward chaining in a sequent calculus style. It is made possible by automated machinery that take care of the necessary structural reasoning and term matching automatically. Our framework can also handle type theoretic correspondences of proofs, effectively allowing the type checking and construction of computational processes via proof. We demonstrate our implementation using a simple propositional logic and its Curry-Howard correspondence to the lambda-calculus, and argue its use with linear logic and its various correspondences to session types.
Getting good performance out of numerical equation solvers requires that the user has provided stable and efficient functions representing their model. However, users should not be trusted to write good code. In this manuscript we describe ModelingToolkit (MTK), a symbolic equation-based modeling system which allows for composable transformations to generate stable, efficient, and parallelized model implementations. MTK blurs the lines of traditional symbolic computing by acting directly on a users numerical code. We show the ability to apply graph algorithms for automatically parallelizing and performing index reduction on code written for differential-algebraic equation (DAE) solvers, fixing the performance and stability of the model without requiring any changes to on the users part. We demonstrate how composable model transformations can be combined with automated data-driven surrogate generation techniques, allowing machine learning methods to generate accelerated approximate models within an acausal modeling framework. These reduced models are shown to outperform the Dymola Modelica compiler on an HVAC model by 590x at 3% error. Together, this demonstrates MTK as a system for bringing the latest research in graph transformations directly to modeling applications.
A pairing function J associates a unique natural number z to any two natural numbers x,y such that for two unpairing functions K and L, the equalities K(J(x,y))=x, L(J(x,y))=y and J(K(z),L(z))=z hold. Using pairing functions on natural number representations of truth tables, we derive an encoding for Binary Decision Diagrams with the unique property that its boolean evaluation faithfully mimics its structural conversion to a a natural number through recursive application of a matching pairing function. We then use this result to derive {em ranking} and {em unranking} functions for BDDs and reduced BDDs. The paper is organized as a self-contained literate Prolog program, available at http://logic.csci.unt.edu/tarau/research/2008/pBDD.zip Keywords: logic programming and computational mathematics, pairing/unpairing functions, encodings of boolean functions, binary decision diagrams, natural number representations of truth tables
Multi-relational networks are used extensively to structure knowledge. Perhaps the most popular instance, due to the widespread adoption of the Semantic Web, is the Resource Description Framework (RDF). One of the primary purposes of a knowledge network is to reason; that is, to alter the topology of the network according to an algorithm that uses the existing topological structure as its input. There exist many such reasoning algorithms. With respect to the Semantic Web, the bivalent, monotonic reasoners of the RDF Schema (RDFS) and the Web Ontology Language (OWL) are the most prevalent. However, nothing prevents other forms of reasoning from existing in the Semantic Web. This article presents a non-bivalent, non-monotonic, evidential logic and reasoner that is an algebraic ring over a multi-relational network equipped with two binary operations that can be composed to execute various forms of inference. Given its multi-relational grounding, it is possible to use the presented evidential framework as another method for structuring knowledge and reasoning in the Semantic Web. The benefits of this framework are that it works with arbitrary, partial, and contradictory knowledge while, at the same time, it supports a tractable approximate reasoning process.
The first-order theory of finite and infinite trees has been studied since the eighties, especially by the logic programming community. Following Djelloul, Dao and Fruhwirth, we consider an extension of this theory with an additional predicate for finiteness of trees, which is useful for expressing properties about (not just datatypes but also) codatatypes. Based on their work, we present a simplification procedure that determines whether any given (not necessarily closed) formula is satisfiable, returning a simplified formula which enables one to read off all possible models. Our extension makes the algorithm usable for algebraic (co)datatypes, which was impossible in their original work due to restrictive assumptions. We also provide a prototype implementation of our simplification procedure and evaluate it on instances from the SMT-LIB.