Do you want to publish a course? Click here

The Extended Theory of Trees and Algebraic (Co)datatypes

216   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2020
and research's language is English
 Authors Fabian Zaiser




Ask ChatGPT about the research

The first-order theory of finite and infinite trees has been studied since the eighties, especially by the logic programming community. Following Djelloul, Dao and Fruhwirth, we consider an extension of this theory with an additional predicate for finiteness of trees, which is useful for expressing properties about (not just datatypes but also) codatatypes. Based on their work, we present a simplification procedure that determines whether any given (not necessarily closed) formula is satisfiable, returning a simplified formula which enables one to read off all possible models. Our extension makes the algorithm usable for algebraic (co)datatypes, which was impossible in their original work due to restrictive assumptions. We also provide a prototype implementation of our simplification procedure and evaluate it on instances from the SMT-LIB.



rate research

Read More

Algebraic characterization of logic programs has received increasing attention in recent years. Researchers attempt to exploit connections between linear algebraic computation and symbolic computation in order to perform logical inference in large scale knowledge bases. This paper proposes further improvement by using sparse matrices to embed logic programs in vector spaces. We show its great power of computation in reaching the fixpoint of the immediate consequence operator from the initial vector. In particular, performance for computing the least models of definite programs is dramatically improved in this way. We also apply the method to the computation of stable models of normal programs, in which the guesses are associated with initial matrices, and verify its effect when there are small numbers of negation. These results show good enhancement in terms of performance for computing consequences of programs and depict the potential power of tensorized logic programs.
145 - Zhaohua Luo 2009
The concept of a clone is central to many branches of mathematics, such as universal algebra, algebraic logic, and lambda calculus. Abstractly a clone is a category with two objects such that one is a countably infinite power of the other. Left and right algebras over a clone are covariant and contravariant functors from the category to that of sets respectively. In this paper we show that first-order logic can be studied effectively using the notions of right and left algebras over a clone. It is easy to translate the classical treatment of logic into our setting and prove all the fundamental theorems of first-order theory algebraically.
Modern distributed systems often rely on so called weakly-consistent databases, which achieve scalability by sacrificing the consistency guarantee of distributed transaction processing. Such databases have been formalised in two different styles, one based on abstract executions and the other based on dependency graphs. The choice between these styles has been made according to intended applications: the former has been used to specify and verify the implementation of these databases, and the latter to prove properties of programs running on top of the databases. In this paper, we present a set of novel algebraic laws (i.e. inequations) that connect these two styles of specifications; the laws relate binary relations used in a specification based on abstract executions, to those used in a specification based on dependency graphs. We then show that this algebraic connection gives rise to so called robustness criteria, conditions which ensures that a program running on top of a weakly-consistent database does not exhibit anomalous behaviours due to this weak consistency. These criteria make it easy to reason about programs running on top of these databases, and may become a basis for dynamic or static program analyses. For a certain class of consistency models specifications, we prove a full abstraction result that connects the two styles of specifications.
There exists a rich literature of rule formats guaranteeing different algebraic properties for formalisms with a Structural Operational Semantics. Moreover, there exist a few approaches for automatically deriving axiomatizations characterizing strong bisimilarity of processes. To our knowledge, this literature has never been extended to the setting with data (e.g. to model storage and memory). We show how the rule formats for algebraic properties can be exploited in a generic manner in the setting with data. Moreover, we introduce a new approach for deriving sound and ground-complete axiom schemata for a notion of bisimilarity with data, called stateless bisimilarity, based on intuitive auxiliary function symbols for handling the store component. We do restrict, however, the axiomatization to the setting where the store component is only given in terms of constants.
99 - Paolo Torrini 2015
In functional programming, datatypes a la carte provide a convenient modular representation of recursive datatypes, based on their initial algebra semantics. Unfortunately it is highly challenging to implement this technique in proof assistants that are based on type theory, like Coq. The reason is that it involves type definitions, such as those of type-level fixpoint operators, that are not strictly positive. The known work-around of impredicative encodings is problematic, insofar as it impedes conventional inductive reasoning. Weak induction principles can be used instead, but they considerably complicate proofs. This paper proposes a novel and simpler technique to reason inductively about impredicative encodings, based on Mendler-style induction. This technique involves dispensing with dependent induction, ensuring that datatypes can be lifted to predicates and relying on relational formulations. A case study on proving subject reduction for structural operational semantics illustrates that the approach enables modular proofs, and that these proofs are essentially similar to conventional ones.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا