Do you want to publish a course? Click here

Accent Estimation of Japanese Words from Their Surfaces and Romanizations for Building Large Vocabulary Accent Dictionaries

54   0   0.0 ( 0 )
 Added by Hideyuki Tachibana
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In Japanese text-to-speech (TTS), it is necessary to add accent information to the input sentence. However, there are a limited number of publicly available accent dictionaries, and those dictionaries e.g. UniDic, do not contain many compound words, proper nouns, etc., which are required in a practical TTS system. In order to build a large scale accent dictionary that contains those words, the authors developed an accent estimation technique that predicts the accent of a word from its limited information, namely the surface (e.g. kanji) and the yomi (simplified phonetic information). It is experimentally shown that the technique can estimate accents with high accuracies, especially for some categories of words. The authors applied this technique to an existing large vocabulary Japanese dictionary NEologd, and obtained a large vocabulary Japanese accent dictionary. Many cases have been observed in which the use of this dictionary yields more appropriate phonetic information than UniDic.



rate research

Read More

The performance of automatic speech recognition systems degrades with increasing mismatch between the training and testing scenarios. Differences in speaker accents are a significant source of such mismatch. The traditional approach to deal with multiple accents involves pooling data from several accents during training and building a single model in multi-task fashion, where tasks correspond to individual accents. In this paper, we explore an alternate model where we jointly learn an accent classifier and a multi-task acoustic model. Experiments on the American English Wall Street Journal and British English Cambridge corpora demonstrate that our joint model outperforms the strong multi-task acoustic model baseline. We obtain a 5.94% relative improvement in word error rate on British English, and 9.47% relative improvement on American English. This illustrates that jointly modeling with accent information improves acoustic model performance.
This paper describes the AISpeech-SJTU system for the accent identification track of the Interspeech-2020 Accented English Speech Recognition Challenge. In this challenge track, only 160-hour accented English data collected from 8 countries and the auxiliary Librispeech dataset are provided for training. To build an accurate and robust accent identification system, we explore the whole system pipeline in detail. First, we introduce the ASR based phone posteriorgram (PPG) feature to accent identification and verify its efficacy. Then, a novel TTS based approach is carefully designed to augment the very limited accent training data for the first time. Finally, we propose the test time augmentation and embedding fusion schemes to further improve the system performance. Our final system is ranked first in the challenge and outperforms all the other participants by a large margin. The submitted system achieves 83.63% average accuracy on the challenge evaluation data, ahead of the others by more than 10% in absolute terms.
The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influence of the speakers native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network-based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4 percent on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.
Existing approaches for learning word embeddings often assume there are sufficient occurrences for each word in the corpus, such that the representation of words can be accurately estimated from their contexts. However, in real-world scenarios, out-of-vocabulary (a.k.a. OOV) words that do not appear in training corpus emerge frequently. It is challenging to learn accurate representations of these words with only a few observations. In this paper, we formulate the learning of OOV embeddings as a few-shot regression problem, and address it by training a representation function to predict the oracle embedding vector (defined as embedding trained with abundant observations) based on limited observations. Specifically, we propose a novel hierarchical attention-based architecture to serve as the neural regression function, with which the context information of a word is encoded and aggregated from K observations. Furthermore, our approach can leverage Model-Agnostic Meta-Learning (MAML) for adapting the learned model to the new corpus fast and robustly. Experiments show that the proposed approach significantly outperforms existing methods in constructing accurate embeddings for OOV words, and improves downstream tasks where these embeddings are utilized.
We propose a novel way to handle out of vocabulary (OOV) words in downstream natural language processing (NLP) tasks. We implement a network that predicts useful embeddings for OOV words based on their morphology and on the context in which they appear. Our model also incorporates an attention mechanism indicating the focus allocated to the left context words, the right context words or the words characters, hence making the prediction more interpretable. The model is a ``drop-in module that is jointly trained with the downstream tasks neural network, thus producing embeddings specialized for the task at hand. When the task is mostly syntactical, we observe that our model aims most of its attention on surface form characters. On the other hand, for tasks more semantical, the network allocates more attention to the surrounding words. In all our tests, the module helps the network to achieve better performances in comparison to the use of simple random embeddings.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا